Expert-Adaptive Medical Image Segmentation
- URL: http://arxiv.org/abs/2402.07330v2
- Date: Wed, 1 May 2024 06:33:56 GMT
- Title: Expert-Adaptive Medical Image Segmentation
- Authors: Binyan Hu, A. K. Qin,
- Abstract summary: Mainstream medical image segmentation approaches are based on deep neural networks (DNNs)
In the medical domain, the annotations generated by different experts can be inherently distinct.
In this work, we evaluate a customised expert-adaptive method, characterised by multi-expert annotation, multi-task DNN-based model training, and lightweight model fine-tuning.
- Score: 1.3428344011390778
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image segmentation (MIS) plays an instrumental role in medical image analysis, where considerable effort has been devoted to automating the process. Currently, mainstream MIS approaches are based on deep neural networks (DNNs), which are typically trained on a dataset with annotations produced by certain medical experts. In the medical domain, the annotations generated by different experts can be inherently distinct due to complexity of medical images and variations in expertise and post-segmentation missions. Consequently, the DNN model trained on the data annotated by some experts may hardly adapt to a new expert. In this work, we evaluate a customised expert-adaptive method, characterised by multi-expert annotation, multi-task DNN-based model training, and lightweight model fine-tuning, to investigate model's adaptivity to a new expert in the situation where the amount and mobility of training images are limited. Experiments conducted on brain MRI segmentation tasks with limited training data demonstrate its effectiveness and the impact of its key parameters.
Related papers
- Towards a vision foundation model for comprehensive assessment of Cardiac MRI [11.838157772803282]
We introduce a vision foundation model trained for cardiac magnetic resonance imaging (CMR) assessment.
We finetune the model in supervised way for 9 clinical tasks typical to a CMR workflow.
We demonstrate improved accuracy and robustness across all tasks, over a range of available labeled dataset sizes.
arXiv Detail & Related papers (2024-10-02T15:32:01Z) - LoRKD: Low-Rank Knowledge Decomposition for Medical Foundation Models [59.961172635689664]
"Knowledge Decomposition" aims to improve the performance on specific medical tasks.
We propose a novel framework named Low-Rank Knowledge Decomposition (LoRKD)
LoRKD explicitly separates gradients from different tasks by incorporating low-rank expert modules and efficient knowledge separation convolution.
arXiv Detail & Related papers (2024-09-29T03:56:21Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - Self-Supervised-RCNN for Medical Image Segmentation with Limited Data
Annotation [0.16490701092527607]
We propose an alternative deep learning training strategy based on self-supervised pretraining on unlabeled MRI scans.
Our pretraining approach first, randomly applies different distortions to random areas of unlabeled images and then predicts the type of distortions and loss of information.
The effectiveness of the proposed method for segmentation tasks in different pre-training and fine-tuning scenarios is evaluated.
arXiv Detail & Related papers (2022-07-17T13:28:52Z) - U-Net-and-a-half: Convolutional network for biomedical image
segmentation using multiple expert-driven annotations [6.682450741319984]
Deep learning systems for biomedical segmentation often require access to expert-driven, manually annotated datasets.
Here we present a deep neural network, defined as U-Net-and-a-half, which can simultaneously learn from annotations performed by multiple experts on the same set of images.
arXiv Detail & Related papers (2021-08-10T13:08:39Z) - Deep Learning Based Cardiac MRI Segmentation: Do We Need Experts? [12.36854197042851]
We show that a segmentation neural network trained on non-expert groundtruth data is, to all practical purposes, as good as on expert groundtruth data.
We highlight an opportunity for the efficient and cheap creation of annotations for cardiac datasets.
arXiv Detail & Related papers (2021-07-23T20:10:58Z) - Domain Generalization on Medical Imaging Classification using Episodic
Training with Task Augmentation [62.49837463676111]
We propose a novel scheme of episodic training with task augmentation on medical imaging classification.
Motivated by the limited number of source domains in real-world medical deployment, we consider the unique task-level overfitting.
arXiv Detail & Related papers (2021-06-13T03:56:59Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Cross-Modal Information Maximization for Medical Imaging: CMIM [62.28852442561818]
In hospitals, data are siloed to specific information systems that make the same information available under different modalities.
This offers unique opportunities to obtain and use at train-time those multiple views of the same information that might not always be available at test-time.
We propose an innovative framework that makes the most of available data by learning good representations of a multi-modal input that are resilient to modality dropping at test-time.
arXiv Detail & Related papers (2020-10-20T20:05:35Z) - Multiple Expert Brainstorming for Domain Adaptive Person
Re-identification [140.3998019639158]
We propose a multiple expert brainstorming network (MEB-Net) for domain adaptive person re-ID.
MEB-Net adopts a mutual learning strategy, where multiple networks with different architectures are pre-trained within a source domain.
Experiments on large-scale datasets demonstrate the superior performance of MEB-Net over the state-of-the-arts.
arXiv Detail & Related papers (2020-07-03T08:16:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.