論文の概要: Beyond LLMs: Advancing the Landscape of Complex Reasoning
- arxiv url: http://arxiv.org/abs/2402.08064v1
- Date: Mon, 12 Feb 2024 21:14:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-14 17:29:04.209368
- Title: Beyond LLMs: Advancing the Landscape of Complex Reasoning
- Title(参考訳): LLMを超えて - 複雑な推論のランドスケープを促進する
- Authors: Jennifer Chu-Carroll, Andrew Beck, Greg Burnham, David OS Melville,
David Nachman, A. Erdem \"Ozcan, David Ferrucci
- Abstract要約: EC AIプラットフォームは、制約満足度と最適化問題を解決するために、ニューロシンボリックアプローチを採用している。
システムは正確で高性能な論理推論エンジンを採用している。
システムは、自然言語と簡潔な言語でアプリケーションロジックを指定する開発者をサポートする。
- 参考スコア(独自算出の注目度): 0.35813349058229593
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Since the advent of Large Language Models a few years ago, they have often
been considered the de facto solution for many AI problems. However, in
addition to the many deficiencies of LLMs that prevent them from broad industry
adoption, such as reliability, cost, and speed, there is a whole class of
common real world problems that Large Language Models perform poorly on,
namely, constraint satisfaction and optimization problems. These problems are
ubiquitous and current solutions are highly specialized and expensive to
implement. At Elemental Cognition, we developed our EC AI platform which takes
a neuro-symbolic approach to solving constraint satisfaction and optimization
problems. The platform employs, at its core, a precise and high performance
logical reasoning engine, and leverages LLMs for knowledge acquisition and user
interaction. This platform supports developers in specifying application logic
in natural and concise language while generating application user interfaces to
interact with users effectively. We evaluated LLMs against systems built on the
EC AI platform in three domains and found the EC AI systems to significantly
outperform LLMs on constructing valid and optimal solutions, on validating
proposed solutions, and on repairing invalid solutions.
- Abstract(参考訳): 数年前にLarge Language Modelsが登場して以来、多くのAI問題のデファクトソリューションとみなされてきた。
しかし、信頼性、コスト、スピードといった業界で広く採用されるのを防ぐLLMの多くの欠陥に加えて、大規模言語モデルでは制約満足度や最適化の問題が不十分な、一般的な現実世界の問題のクラスが存在する。
これらの問題はユビキタスであり、現在のソリューションは高度に専門的で実装に費用がかかる。
Elemental Cognitionでは、制約満足度と最適化問題を解決するために、ニューロシンボリックアプローチを採用するEC AIプラットフォームを開発しました。
このプラットフォームは、中核として、正確で高性能な論理推論エンジンを採用し、知識獲得とユーザインタラクションにLLMを活用している。
このプラットフォームは、アプリケーションロジックを自然言語と簡潔な言語で指定し、アプリケーションユーザインターフェースを生成してユーザと効果的に対話するのをサポートする。
3つの領域のEC AIプラットフォーム上に構築されたシステムに対してLLMを評価し,有効かつ最適なソリューションの構築,提案されたソリューションの検証,無効なソリューションの修復において,EC AIシステムはLLMを大幅に上回る結果を得た。
関連論文リスト
- Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [50.485788083202124]
強化学習(Reinforcement Learning, RL)は、大規模言語モデルを人間の好みと整合させ、複雑なタスクを遂行する能力を向上させる上で重要な役割を担っている。
反応生成過程をマルコフ決定プロセス(MDP)として定式化し,ソフトアクター・クリティック(SAC)フレームワークを用いて,言語モデルによって直接パラメータ化されたQ関数を最適化する,直接Q関数最適化(DQO)を提案する。
GSM8KとMATHという2つの数学問題解決データセットの実験結果から、DQOは従来の手法よりも優れており、言語モデルを整合させるための有望なオフライン強化学習手法として確立されている。
論文 参考訳(メタデータ) (2024-10-11T23:29:20Z) - Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making [85.24399869971236]
我々は,大規模言語モデル(LLM)を具体的意思決定のために評価することを目指している。
既存の評価は最終的な成功率にのみ依存する傾向がある。
本稿では,様々なタスクの形式化を支援する汎用インタフェース (Embodied Agent Interface) を提案する。
論文 参考訳(メタデータ) (2024-10-09T17:59:00Z) - BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts [59.83547898874152]
我々は,Bloomの分類にインスパイアされた新しいプロンプト技術であるBloomWiseを導入し,Large Language Models(LLMs)の性能を向上させる。
より洗練された認知スキルを身につける必要性に関する決定は、LLMによる自己評価に基づいている。
4つの一般的な算数推論データセットの広範な実験において,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-10-05T09:27:52Z) - Optimal Decision Making Through Scenario Simulations Using Large Language Models [0.0]
大規模言語モデル(LLM)は、複雑な問題へのアプローチと解決の方法を変えました。
本稿では,この能力ギャップを橋渡しする革新的な手法を提案する。
LLMがユーザから複数のオプションとそれぞれのパラメータをリクエストできるようにすることで、動的フレームワークを導入しています。
この関数は提供された選択肢を分析し、潜在的な結果をシミュレートし、最も有利な解を決定するように設計されている。
論文 参考訳(メタデータ) (2024-07-09T01:23:09Z) - Multi-step Inference over Unstructured Data [2.169874047093392]
医療、法律、金融などの分野における高い意思決定タスクは、精度、包括性、論理的一貫性のレベルを必要とする。
これらの問題に対処するための,ニューロシンボリックAIプラットフォームを開発した。
このプラットフォームは、知識抽出とアライメントのための微調整LDMと、堅牢なシンボリック推論エンジンを統合している。
論文 参考訳(メタデータ) (2024-06-26T00:00:45Z) - Building Guardrails for Large Language Models [19.96292920696796]
LLMの入力や出力をフィルタリングするガードレールは、コアセーフガード技術として登場した。
このポジションペーパーでは、現在のオープンソースソリューション(Llama Guard, Nvidia NeMo, Guardrails AI)を詳しく調べ、より完全なソリューションを構築するための課題と道筋について論じる。
論文 参考訳(メタデータ) (2024-02-02T16:35:00Z) - Reasoning Capacity in Multi-Agent Systems: Limitations, Challenges and
Human-Centered Solutions [14.398238217358116]
推論能力の形式的定義を提示し,システムの各コンポーネント内の制限を識別する上で,その有用性を示す。
そして、これらの制限が、人間のフィードバックを使って推論の欠点を緩和する自己反射的プロセスによってどのように対処できるかについて議論する。
論文 参考訳(メタデータ) (2024-02-02T02:53:11Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
この作業では、複雑な自律運転シナリオの意思決定コンポーネントとして、Large Language Models(LLM)を採用している。
大規模実験により,提案手法は単車載タスクのベースラインアプローチを一貫して超えるだけでなく,複数車載コーディネートにおいても複雑な運転動作の処理にも有効であることが示された。
論文 参考訳(メタデータ) (2023-10-04T17:59:49Z) - AdaRefiner: Refining Decisions of Language Models with Adaptive Feedback [37.22370177877156]
大規模言語モデル(LLM)は、様々な領域で大きな成功を収めている。
複雑な意思決定タスクにおけるそれらの応用は、しばしば複雑な迅速なエンジニアリングや微調整を必要とする。
本稿では,LLMとRLフィードバックの相乗効果を高めるために設計された新しいフレームワークであるAdaRefinerを紹介する。
我々の研究は、RLフィードバックによるLLMの自動自己修正に貢献し、複雑な意思決定問題に対してより適応的で効率的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-29T12:16:19Z) - Automatically Correcting Large Language Models: Surveying the landscape
of diverse self-correction strategies [104.32199881187607]
大規模言語モデル(LLM)は、幅広いNLPタスクで顕著な性能を示した。
これらの欠陥を正すための有望なアプローチは自己補正であり、LLM自体が自身の出力で問題を修正するために誘導される。
本稿では,この新技術について概観する。
論文 参考訳(メタデータ) (2023-08-06T18:38:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。