論文の概要: Fully Automated Generation of Combinatorial Optimisation Systems Using Large Language Models
- arxiv url: http://arxiv.org/abs/2503.15556v2
- Date: Fri, 04 Apr 2025 17:13:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 16:30:18.081025
- Title: Fully Automated Generation of Combinatorial Optimisation Systems Using Large Language Models
- Title(参考訳): 大規模言語モデルを用いた組合せ最適化システムの完全自動生成
- Authors: Daniel Karapetyan,
- Abstract要約: 大規模言語モデル(LLM)を用いた完全自動最適化システムの実現可能性について検討する。
LLMは、自然言語でユーザが提供する問題記述を解釈し、問題固有のソフトウェアコンポーネントを設計、実装する責任を負う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the last few decades, researchers have made considerable efforts to make decision support more accessible for small and medium enterprises by reducing the cost of designing, developing and maintaining automated decision support systems. However, due to the diversity of the underlying combinatorial optimisation problems, reusability of such systems has been limited; in most cases, expensive expertise has been required to implement bespoke software components. We explore the feasibility of fully automated generation of combinatorial optimisation systems using large language models (LLMs). An LLM will be responsible for interpreting the user-provided problem description in natural language and designing and implementing problem-specific software components. We discuss the principles of fully automated LLM-based optimisation system generation, and evaluate several proof-of-concept generators, comparing their performance on four optimisation problems.
- Abstract(参考訳): 過去数十年間、研究者は、自動意思決定支援システムの設計、開発、保守のコストを削減し、中小企業にとって意思決定支援をより使いやすくするために、かなりの努力を払ってきた。
しかし、基礎となる組合せ最適化問題の多様性のため、そのようなシステムの再利用性は制限されており、多くの場合、高価なソフトウェアコンポーネントを実装するには高価な専門知識が必要である。
大規模言語モデル(LLM)を用いた組合せ最適化システムの完全自動生成の実現可能性について検討する。
LLMは、自然言語でユーザが提供する問題記述を解釈し、問題固有のソフトウェアコンポーネントを設計、実装する責任を負う。
完全に自動化されたLCMベースの最適化システム生成の原理を議論し、いくつかの概念実証生成器の評価を行い、その性能を4つの最適化問題と比較した。
関連論文リスト
- An LLM-enabled Multi-Agent Autonomous Mechatronics Design Framework [49.633199780510864]
本研究は, 機械設計, 最適化, エレクトロニクス, ソフトウェア工学の専門知識を統合した多エージェント自律メカトロニクス設計フレームワークを提案する。
このフレームワークは、言語駆動のワークフローを通じて運用され、構造化された人間のフィードバックを組み込んで、現実世界の制約下での堅牢なパフォーマンスを保証する。
完全に機能する自律型容器は、最適化された推進、コスト効率の高い電子機器、高度な制御を備えていた。
論文 参考訳(メタデータ) (2025-04-20T16:57:45Z) - Towards Agentic Recommender Systems in the Era of Multimodal Large Language Models [75.4890331763196]
大規模言語モデル(LLM)の最近のブレークスルーは、エージェントAIシステムの出現につながっている。
LLMベースのAgentic RS(LLM-ARS)は、よりインタラクティブで、コンテキストを認識し、プロアクティブなレコメンデーションを提供する。
論文 参考訳(メタデータ) (2025-03-20T22:37:15Z) - IMPROVE: Iterative Model Pipeline Refinement and Optimization Leveraging LLM Agents [17.301758094000125]
大規模言語モデル(LLM)エージェントは、コンピュータビジョンモデルの開発を自動化するための有望なソリューションとして登場した。
LLM駆動のMLパイプライン設計のための新しい戦略であるIterative Refinementを導入する。
イテレーティブリファインメントは安定性、解釈可能性、全体的なモデルパフォーマンスを改善します。
論文 参考訳(メタデータ) (2025-02-25T01:52:37Z) - DNN-Powered MLOps Pipeline Optimization for Large Language Models: A Framework for Automated Deployment and Resource Management [0.0]
本研究では、Deep Neural Networks(DNN)を活用してMLOpsパイプラインをLarge Language Models(LLM)に最適化する新しいフレームワークを提案する。
当社のアプローチでは,最適なパフォーマンスとコスト効率を維持しつつ,デプロイメント決定やリソース割り当て,パイプライン最適化を自動化するインテリジェントシステムを導入しています。
論文 参考訳(メタデータ) (2025-01-14T14:15:32Z) - LLM-based Optimization of Compound AI Systems: A Survey [64.39860384538338]
複合AIシステムでは、LLMコール、レトリバー、コードインタプリタ、ツールなどのコンポーネントが相互接続される。
近年の進歩により, LLM を用いたパラメータのエンドツーエンド最適化が可能となった。
本稿では,複合AIシステムのLCMに基づく最適化の原理と動向について述べる。
論文 参考訳(メタデータ) (2024-10-21T18:06:25Z) - A Survey: Collaborative Hardware and Software Design in the Era of Large Language Models [16.250856588632637]
大規模言語モデル(LLM)の急速な発展は、人工知能の分野を大きく変えた。
これらのモデルは多様なアプリケーションに統合され、研究と産業の両方に影響を及ぼす。
本稿では,大規模言語モデルの特徴と制約に対処するために,ハードウェアとソフトウェアの共同設計手法について検討する。
論文 参考訳(メタデータ) (2024-10-08T21:46:52Z) - Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization [62.16747639440893]
大規模言語モデル(LLM)とその関連技術は、特に迅速な工学とエージェント工学の領域において進歩している。
提案するフレームワークは、検索拡張生成(RAG)を組み込んで、ドメイン固有の知識を取得してソリューションを生成するシステムの能力を高める。
論文 参考訳(メタデータ) (2024-08-07T08:43:32Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - Towards Single-System Illusion in Software-Defined Vehicles -- Automated, AI-Powered Workflow [3.2821049498759094]
本稿では,車載ソフトウェアシステムの開発における,新しいモデルと特徴に基づくアプローチを提案する。
提案されたアプローチの重要なポイントの1つは、近代的な生成AI、特にLarge Language Models(LLM)の導入である。
その結果、パイプラインは広範囲に自動化され、各ステップでフィードバックが生成される。
論文 参考訳(メタデータ) (2024-03-21T15:07:57Z) - Beyond LLMs: Advancing the Landscape of Complex Reasoning [0.35813349058229593]
EC AIプラットフォームは、制約満足度と最適化問題を解決するために、ニューロシンボリックアプローチを採用している。
システムは正確で高性能な論理推論エンジンを採用している。
システムは、自然言語と簡潔な言語でアプリケーションロジックを指定する開発者をサポートする。
論文 参考訳(メタデータ) (2024-02-12T21:14:45Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - LAMBO: Large AI Model Empowered Edge Intelligence [71.56135386994119]
次世代エッジインテリジェンスは、オフロード技術を通じて様々なアプリケーションに恩恵をもたらすことが期待されている。
従来のオフロードアーキテクチャは、不均一な制約、部分的な認識、不確実な一般化、トラクタビリティの欠如など、いくつかの問題に直面している。
我々は、これらの問題を解決するための10億以上のパラメータを持つLarge AI Model-Based Offloading (LAMBO)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-29T07:25:42Z) - Optimal by Design: Model-Driven Synthesis of Adaptation Strategies for
Autonomous Systems [9.099295007630484]
我々は,自律システムのための最適適応戦略のモデルベース要求駆動型合成のためのフレームワークであるOptimal by Design (ObD)を提案する。
ObDは、自己適応システムの基本的な要素、すなわちシステム、能力、要求、環境の高レベルな記述のためのモデルを提案する。
これらの要素に基づいてマルコフ決定プロセス(MDP)が構築され、最適な戦略や最も報いるシステム行動を計算する。
論文 参考訳(メタデータ) (2020-01-16T12:49:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。