Context-Aware Automated Passenger Counting Data Denoising
- URL: http://arxiv.org/abs/2402.08688v1
- Date: Tue, 6 Feb 2024 16:55:41 GMT
- Title: Context-Aware Automated Passenger Counting Data Denoising
- Authors: No\"elie Cherrier, Baptiste R\'erolle, Martin Graive, Amir Dib,
Eglantine Schmitt
- Abstract summary: We propose a denoising algorithm for APC data to improve their robustness and ease their analyzes.
The proposed approach consists in a constrained integer linear optimization, taking advantage of ticketing data and historical ridership data.
The performances are assessed and compared to other denoising methods on several public transportation networks in France.
- Score: 2.249916681499244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A reliable and accurate knowledge of the ridership in public transportation
networks is crucial for public transport operators and public authorities to be
aware of their network's use and optimize transport offering. Several
techniques to estimate ridership exist nowadays, some of them in an automated
manner. Among them, Automatic Passenger Counting (APC) systems detect
passengers entering and leaving the vehicle at each station of its course.
However, data resulting from these systems are often noisy or even biased,
resulting in under or overestimation of onboard occupancy. In this work, we
propose a denoising algorithm for APC data to improve their robustness and ease
their analyzes. The proposed approach consists in a constrained integer linear
optimization, taking advantage of ticketing data and historical ridership data
to further constrain and guide the optimization. The performances are assessed
and compared to other denoising methods on several public transportation
networks in France, to manual counts available on one of these networks, and on
simulated data.
Related papers
- Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
Analyzing human data is crucial for developing autonomous systems that replicate safe driving practices.
This paper presents a comparative evaluation of human compliance with traffic and safety rules across multiple trajectory prediction datasets.
arXiv Detail & Related papers (2024-11-04T09:21:00Z) - Reliable, Routable, and Reproducible: Collection of Pedestrian Pathways at Statewide Scale [7.346075203371274]
This paper presents a methodology to collect, manage, serve, and maintain pedestrian path data at a statewide scale.
We aim to produce routable pedestrian pathways for the entire State of Washington within approximately two years.
arXiv Detail & Related papers (2024-10-12T02:31:57Z) - A V2X-based Privacy Preserving Federated Measuring and Learning System [0.0]
We propose a federated measurement and learning system that provides real-time data to fellow vehicles over Vehicle-to-Vehicle (V2V) communication.
We also operate a federated learning scheme over the Vehicle-to-Network (V2N) link to create a predictive model of the transportation network.
Results indicate that the proposed FL scheme improves learning performance and prevents eavesdropping at the aggregator server side.
arXiv Detail & Related papers (2024-01-24T23:11:11Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - Estimating the Robustness of Public Transport Systems Using Machine
Learning [62.997667081978825]
Planning public transport systems is a highly complex process involving many steps.
Integrating robustness from a passenger's point of view makes the task even more challenging.
In this paper, we explore a new way of such a scenario-based robustness approximation by using methods from machine learning.
arXiv Detail & Related papers (2021-06-10T05:52:56Z) - A Deep Value-network Based Approach for Multi-Driver Order Dispatching [55.36656442934531]
We propose a deep reinforcement learning based solution for order dispatching.
We conduct large scale online A/B tests on DiDi's ride-dispatching platform.
Results show that CVNet consistently outperforms other recently proposed dispatching methods.
arXiv Detail & Related papers (2021-06-08T16:27:04Z) - Unavailable Transit Feed Specification: Making it Available with
Recurrent Neural Networks [8.968417883198374]
In general, the demand for public transport services, with an increasing reluctance to use them, is their quality.
The approach proposed in this paper, using innovative methodologies resorting on data mining and machine learning techniques, aims to make available the unavailable data about public transport.
arXiv Detail & Related papers (2021-02-20T12:17:20Z) - Deep traffic light detection by overlaying synthetic context on
arbitrary natural images [49.592798832978296]
We propose a method to generate artificial traffic-related training data for deep traffic light detectors.
This data is generated using basic non-realistic computer graphics to blend fake traffic scenes on top of arbitrary image backgrounds.
It also tackles the intrinsic data imbalance problem in traffic light datasets, caused mainly by the low amount of samples of the yellow state.
arXiv Detail & Related papers (2020-11-07T19:57:22Z) - Study on Key Technologies of Transit Passengers Travel Pattern Mining
and Applications based on Multiple Sources of Data [1.370633147306388]
We propose a series of methodologies to mine transit riders travel pattern and behavioral preferences.
We use these knowledges to adjust and optimize the transit systems.
arXiv Detail & Related papers (2020-05-26T22:35:28Z) - Data-Driven Prediction of Route-Level Energy Use for Mixed-Vehicle
Transit Fleets [7.2775693810940565]
Public transit agencies are seeking to reduce their fuel use by employing electric vehicles (EVs)
Because of the high upfront cost of EVs, most agencies can afford only mixed fleets of internal-combustion and electric vehicles.
We present a novel framework for the data-driven prediction of route-level energy use for mixed-vehicle transit fleets.
arXiv Detail & Related papers (2020-04-10T16:31:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.