A Survey of Generative AI for de novo Drug Design: New Frontiers in Molecule and Protein Generation
- URL: http://arxiv.org/abs/2402.08703v2
- Date: Wed, 26 Jun 2024 11:03:21 GMT
- Title: A Survey of Generative AI for de novo Drug Design: New Frontiers in Molecule and Protein Generation
- Authors: Xiangru Tang, Howard Dai, Elizabeth Knight, Fang Wu, Yunyang Li, Tianxiao Li, Mark Gerstein,
- Abstract summary: Generative models for de novo drug design focus on the creation of novel biological compounds entirely from scratch.
Rapid development in the field, combined with the inherent complexity of the drug design process, creates a difficult landscape for new researchers to enter.
In this survey, we organize de novo drug design into two overarching themes: small molecule and protein generation.
- Score: 8.9311469963107
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence (AI)-driven methods can vastly improve the historically costly drug design process, with various generative models already in widespread use. Generative models for de novo drug design, in particular, focus on the creation of novel biological compounds entirely from scratch, representing a promising future direction. Rapid development in the field, combined with the inherent complexity of the drug design process, creates a difficult landscape for new researchers to enter. In this survey, we organize de novo drug design into two overarching themes: small molecule and protein generation. Within each theme, we identify a variety of subtasks and applications, highlighting important datasets, benchmarks, and model architectures and comparing the performance of top models. We take a broad approach to AI-driven drug design, allowing for both micro-level comparisons of various methods within each subtask and macro-level observations across different fields. We discuss parallel challenges and approaches between the two applications and highlight future directions for AI-driven de novo drug design as a whole. An organized repository of all covered sources is available at https://github.com/gersteinlab/GenAI4Drug.
Related papers
- MAMMAL -- Molecular Aligned Multi-Modal Architecture and Language [0.24434823694833652]
MAMMAL is a versatile multi-task multi-align foundation model that learns from large-scale biological datasets.
We introduce a prompt syntax that supports a wide range of classification, regression, and generation tasks.
We evaluate the model on 11 diverse downstream tasks spanning different steps within a typical drug discovery pipeline.
arXiv Detail & Related papers (2024-10-28T20:45:52Z) - Benchmark on Drug Target Interaction Modeling from a Structure Perspective [48.60648369785105]
Drug-target interaction prediction is crucial to drug discovery and design.
Recent methods, such as those based on graph neural networks (GNNs) and Transformers, demonstrate exceptional performance across various datasets.
We conduct a comprehensive survey and benchmark for drug-target interaction modeling from a structure perspective, via integrating tens of explicit (i.e., GNN-based) and implicit (i.e., Transformer-based) structure learning algorithms.
arXiv Detail & Related papers (2024-07-04T16:56:59Z) - UniIF: Unified Molecule Inverse Folding [67.60267592514381]
We propose a unified model UniIF for inverse folding of all molecules.
Our proposed method surpasses state-of-the-art methods on all tasks.
arXiv Detail & Related papers (2024-05-29T10:26:16Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - Tailoring Molecules for Protein Pockets: a Transformer-based Generative
Solution for Structured-based Drug Design [133.1268990638971]
De novo drug design based on the structure of a target protein can provide novel drug candidates.
We present a generative solution named TamGent that can directly generate candidate drugs from scratch for a given target.
arXiv Detail & Related papers (2022-08-30T09:32:39Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - An In-depth Summary of Recent Artificial Intelligence Applications in
Drug Design [5.365309795469097]
From the year 2017 to 2021, the number of applications of several recent AI models in drug design increases significantly.
This survey includes the theoretical development of the previously mentioned AI models and detailed summaries of 42 recent applications of AI in drug design.
arXiv Detail & Related papers (2021-10-10T00:40:53Z) - Artificial Intelligence in Drug Discovery: Applications and Techniques [33.59138543942538]
Various AI techniques have been used in a wide range of applications, such as virtual screening and drug design.
We first give an overview on drug discovery and discuss related applications, which can be reduced to two major tasks.
We then discuss common data resources, molecule representations and benchmark platforms.
arXiv Detail & Related papers (2021-06-09T20:46:44Z) - Utilising Graph Machine Learning within Drug Discovery and Development [19.21101749270075]
Graph Machine Learning (GML) is receiving growing interest within the pharmaceutical and biotechnology industries for its ability to model biomolecular structures.
Herein, we present a multidisciplinary academic-industrial review of the topic within the context of drug discovery and development.
After introducing key terms and modelling approaches, we move chronologically through the drug development pipeline to identify and summarise work incorporating: target identification, design of small molecules and biologics, and drug repurposing.
arXiv Detail & Related papers (2020-12-09T10:12:33Z) - Generative chemistry: drug discovery with deep learning generative
models [0.0]
This paper reviews the latest advances in generative chemistry which relies on generative modeling to expedite the drug discovery process.
The detailed discussions on utilizing cutting-edge generative architectures, including recurrent neural network, variational autoencoder, adversarial autoencoder, and generative adversarial network for compound generation are focused.
arXiv Detail & Related papers (2020-08-20T14:38:21Z) - Learning To Navigate The Synthetically Accessible Chemical Space Using
Reinforcement Learning [75.95376096628135]
We propose a novel forward synthesis framework powered by reinforcement learning (RL) for de novo drug design.
In this setup, the agent learns to navigate through the immense synthetically accessible chemical space.
We describe how the end-to-end training in this study represents an important paradigm in radically expanding the synthesizable chemical space.
arXiv Detail & Related papers (2020-04-26T21:40:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.