Feature Attribution with Necessity and Sufficiency via Dual-stage Perturbation Test for Causal Explanation
- URL: http://arxiv.org/abs/2402.08845v4
- Date: Tue, 4 Jun 2024 05:15:01 GMT
- Title: Feature Attribution with Necessity and Sufficiency via Dual-stage Perturbation Test for Causal Explanation
- Authors: Xuexin Chen, Ruichu Cai, Zhengting Huang, Yuxuan Zhu, Julien Horwood, Zhifeng Hao, Zijian Li, Jose Miguel Hernandez-Lobato,
- Abstract summary: We introduce Feature Attribution with Necessity and Sufficiency (FANS)
FANS find a neighborhood of the input such that perturbing samples within this neighborhood have a high probability of being Necessity and Sufficiency (PNS) cause for the change in predictions.
We demonstrate that FANS outperforms existing attribution methods on six benchmarks.
- Score: 18.485632810973122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the problem of explainability for machine learning models, focusing on Feature Attribution Methods (FAMs) that evaluate feature importance through perturbation tests. Despite their utility, FAMs struggle to distinguish the contributions of different features, when their prediction changes are similar after perturbation. To enhance FAMs' discriminative power, we introduce Feature Attribution with Necessity and Sufficiency (FANS), which find a neighborhood of the input such that perturbing samples within this neighborhood have a high Probability of being Necessity and Sufficiency (PNS) cause for the change in predictions, and use this PNS as the importance of the feature. Specifically, FANS compute this PNS via a heuristic strategy for estimating the neighborhood and a perturbation test involving two stages (factual and interventional) for counterfactual reasoning. To generate counterfactual samples, we use a resampling-based approach on the observed samples to approximate the required conditional distribution. We demonstrate that FANS outperforms existing attribution methods on six benchmarks. Please refer to the source code via \url{https://github.com/DMIRLAB-Group/FANS}.
Related papers
- Identifiable Latent Neural Causal Models [82.14087963690561]
Causal representation learning seeks to uncover latent, high-level causal representations from low-level observed data.
We determine the types of distribution shifts that do contribute to the identifiability of causal representations.
We translate our findings into a practical algorithm, allowing for the acquisition of reliable latent causal representations.
arXiv Detail & Related papers (2024-03-23T04:13:55Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
Diffusion models benefit from instillation of task-specific information into the score function to steer the sample generation towards desired properties.
This paper provides the first theoretical study towards understanding the influence of guidance on diffusion models in the context of Gaussian mixture models.
arXiv Detail & Related papers (2024-03-03T23:15:48Z) - Evaluation of Active Feature Acquisition Methods for Static Feature
Settings [6.645033437894859]
We introduce a semi-offline reinforcement learning framework for active feature acquisition performance evaluation (AFAPE)
Here, we study and extend the AFAPE problem to cover static feature settings, where features are time-invariant.
We derive and adapt new inverse probability weighting (IPW), direct method (DM), and double reinforcement learning (DRL) estimators within the semi-offline RL framework.
arXiv Detail & Related papers (2023-12-06T17:07:42Z) - Transductive conformal inference with adaptive scores [3.591224588041813]
We consider the transductive setting, where decisions are made on a test sample of $m$ new points.
We show that their joint distribution follows a P'olya urn model, and establish a concentration inequality for their empirical distribution function.
We demonstrate the usefulness of these theoretical results through uniform, in-probability guarantees for two machine learning tasks.
arXiv Detail & Related papers (2023-10-27T12:48:30Z) - LaPLACE: Probabilistic Local Model-Agnostic Causal Explanations [1.0370398945228227]
We introduce LaPLACE-explainer, designed to provide probabilistic cause-and-effect explanations for machine learning models.
The LaPLACE-Explainer component leverages the concept of a Markov blanket to establish statistical boundaries between relevant and non-relevant features.
Our approach offers causal explanations and outperforms LIME and SHAP in terms of local accuracy and consistency of explained features.
arXiv Detail & Related papers (2023-10-01T04:09:59Z) - Breaking the Spurious Causality of Conditional Generation via Fairness
Intervention with Corrective Sampling [77.15766509677348]
Conditional generative models often inherit spurious correlations from the training dataset.
This can result in label-conditional distributions that are imbalanced with respect to another latent attribute.
We propose a general two-step strategy to mitigate this issue.
arXiv Detail & Related papers (2022-12-05T08:09:33Z) - Adaptive Dimension Reduction and Variational Inference for Transductive
Few-Shot Classification [2.922007656878633]
We propose a new clustering method based on Variational Bayesian inference, further improved by Adaptive Dimension Reduction.
Our proposed method significantly improves accuracy in the realistic unbalanced transductive setting on various Few-Shot benchmarks.
arXiv Detail & Related papers (2022-09-18T10:29:02Z) - Accuracy on the Line: On the Strong Correlation Between
Out-of-Distribution and In-Distribution Generalization [89.73665256847858]
We show that out-of-distribution performance is strongly correlated with in-distribution performance for a wide range of models and distribution shifts.
Specifically, we demonstrate strong correlations between in-distribution and out-of-distribution performance on variants of CIFAR-10 & ImageNet.
We also investigate cases where the correlation is weaker, for instance some synthetic distribution shifts from CIFAR-10-C and the tissue classification dataset Camelyon17-WILDS.
arXiv Detail & Related papers (2021-07-09T19:48:23Z) - Attention-based Neural Bag-of-Features Learning for Sequence Data [143.62294358378128]
2D-Attention (2DA) is a generic attention formulation for sequence data.
The proposed attention module is incorporated into the recently proposed Neural Bag of Feature (NBoF) model to enhance its learning capacity.
Our empirical analysis shows that the proposed attention formulations can not only improve performances of NBoF models but also make them resilient to noisy data.
arXiv Detail & Related papers (2020-05-25T17:51:54Z) - Feature Quantization Improves GAN Training [126.02828112121874]
Feature Quantization (FQ) for the discriminator embeds both true and fake data samples into a shared discrete space.
Our method can be easily plugged into existing GAN models, with little computational overhead in training.
arXiv Detail & Related papers (2020-04-05T04:06:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.