論文の概要: GhostWriter: Augmenting Collaborative Human-AI Writing Experiences
Through Personalization and Agency
- arxiv url: http://arxiv.org/abs/2402.08855v1
- Date: Tue, 13 Feb 2024 23:48:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-15 17:18:57.957866
- Title: GhostWriter: Augmenting Collaborative Human-AI Writing Experiences
Through Personalization and Agency
- Title(参考訳): GhostWriter: パーソナライゼーションとエージェンシーによるコラボレーション型AI記述体験の拡大
- Authors: Catherine Yeh, Gonzalo Ramos, Rachel Ng, Andy Huntington, Richard
Banks
- Abstract要約: 大規模言語モデル(LLM)はより広く普及し、様々な形式の筆記補助を提供するのにユビキタスな用途を見出した。
我々はGhostWriterを紹介した。GhostWriterはAIによって強化された書き込みデザインプローブで、ユーザーは強化されたエージェンシーとパーソナライゼーションを実行できる。
GhostWriterを2つの異なる書き込みタスクで使用した18人の参加者を対象に、ユーザがパーソナライズされたテキスト世代の作成を支援し、システムの書き込みスタイルを制御する複数の方法を提供する。
- 参考スコア(独自算出の注目度): 1.7707677585873678
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are becoming more prevalent and have found a
ubiquitous use in providing different forms of writing assistance. However,
LLM-powered writing systems can frustrate users due to their limited
personalization and control, which can be exacerbated when users lack
experience with prompt engineering. We see design as one way to address these
challenges and introduce GhostWriter, an AI-enhanced writing design probe where
users can exercise enhanced agency and personalization. GhostWriter leverages
LLMs to learn the user's intended writing style implicitly as they write, while
allowing explicit teaching moments through manual style edits and annotations.
We study 18 participants who use GhostWriter on two different writing tasks,
observing that it helps users craft personalized text generations and empowers
them by providing multiple ways to control the system's writing style. From
this study, we present insights regarding people's relationship with
AI-assisted writing and offer design recommendations for future work.
- Abstract(参考訳): 大規模言語モデル(LLM)はより広く普及し、様々な形式の筆記補助を提供するのにユビキタスな用途を見出した。
しかし,LSMを利用した書記システムでは,個人化や制御の制限によりユーザをフラストレーションし,迅速なエンジニアリングの経験が欠如している場合にはさらに悪化させる可能性がある。
私たちはデザインをこれらの課題に対処する方法の1つと考え、ユーザーが強化されたエージェンシーとパーソナライゼーションをエクササイズできるaiエンハンスメントライティングデザインプローブであるghostwriterを紹介します。
GhostWriter は LLM を活用して,ユーザの意図した書き込みスタイルを暗黙的に学習すると同時に,手動のスタイル編集やアノテーションを通じて明示的な指導モーメントを可能にする。
GhostWriterを2つの異なる書き込みタスクで使用した18人の参加者を対象に、ユーザがパーソナライズされたテキスト世代の作成を支援し、システムの書き込みスタイルを制御する複数の方法を提供する。
本研究は,AIを活用した文章作成と今後の作業へのデザインレコメンデーションの提供に関する知見を提示する。
関連論文リスト
- "It was 80% me, 20% AI": Seeking Authenticity in Co-Writing with Large Language Models [97.22914355737676]
我々は、AIツールと共同で書き込む際に、著者が自分の真正な声を保存したいかどうか、どのように検討する。
本研究は,人間とAIの共創における真正性の概念を解明するものである。
読者の反応は、人間とAIの共著に対する関心が低かった。
論文 参考訳(メタデータ) (2024-11-20T04:42:32Z) - Step-Back Profiling: Distilling User History for Personalized Scientific Writing [50.481041470669766]
大きな言語モデル(LLM)は、さまざまな自然言語処理タスクに優れていますが、個人向けにパーソナライズされたコンテンツを生成するのに苦労しています。
ユーザ履歴を簡潔なプロファイルに抽出することで,LSMをパーソナライズするためのSTEP-BACK ProFIlingを導入する。
本手法は,一般パーソナライゼーションベンチマークにおいて,ベースラインを最大3.6ポイント向上させる。
論文 参考訳(メタデータ) (2024-06-20T12:58:26Z) - Towards Full Authorship with AI: Supporting Revision with AI-Generated
Views [3.109675063162349]
大きな言語モデル(LLM)は、ユーザーがプロンプトを通じてテキストを生成できるようにすることで、ツールを書く際に新しいユーザーインターフェイス(UI)パラダイムを形作っている。
このパラダイムは、ユーザからシステムへの創造的なコントロールを移行することで、書き込みプロセスにおけるユーザのオーサシップと自律性を低下させる。
テキストフォーカス(Textfocals)は,文章作成におけるユーザの役割を強調する,人間中心のアプローチを調査するためのプロトタイプである。
論文 参考訳(メタデータ) (2024-03-02T01:11:35Z) - The Future of AI-Assisted Writing [0.0]
我々は、情報検索レンズ(プル・アンド・プッシュ)を用いて、そのようなツールの比較ユーザスタディを行う。
我々の研究結果によると、ユーザーは執筆におけるAIのシームレスな支援を歓迎している。
ユーザはAI支援の書き込みツールとのコラボレーションも楽しんだが、オーナシップの欠如を感じなかった。
論文 参考訳(メタデータ) (2023-06-29T02:46:45Z) - VISAR: A Human-AI Argumentative Writing Assistant with Visual
Programming and Rapid Draft Prototyping [13.023911633052482]
VISARは、著者のブレインストーミングと、執筆コンテキストにおける階層的な目標の修正を支援するために設計されたAI対応の筆記アシスタントシステムである。
テキストの同期編集とビジュアルプログラミングによって引数構造を整理し、議論の発散による説得力を高める。
制御された研究室研究により、議論的な執筆計画プロセスの促進におけるVISARの有用性と有効性が確認された。
論文 参考訳(メタデータ) (2023-04-16T15:29:03Z) - Creative Writing with an AI-Powered Writing Assistant: Perspectives from
Professional Writers [9.120878749348986]
ニューラルネットワークモデルを用いた自然言語生成(NLG)は、AIによるクリエイティブな記述ツールを構築するという目標に、これまで以上に近づいています。
ニューラルネットワークモデルを用いた自然言語生成の最近の進歩は、AIを使ったクリエイティブな記述ツールを構築するという目標に、これまで以上に近づいている。
論文 参考訳(メタデータ) (2022-11-09T17:00:56Z) - PEER: A Collaborative Language Model [70.11876901409906]
PEER(コラボレーティブ言語モデル)は,記述プロセス全体を模倣した言語モデルである。
PEERは、ドラフトの作成、提案の追加、編集の提案、アクションの説明を提供することができる。
PEERは様々な領域にまたがって高い性能を示し,編集作業を行う。
論文 参考訳(メタデータ) (2022-08-24T16:56:47Z) - Suggestion Lists vs. Continuous Generation: Interaction Design for
Writing with Generative Models on Mobile Devices Affect Text Length, Wording
and Perceived Authorship [27.853155569154705]
モバイル端末上でAIで書き込むための2つのユーザインタフェースを提示し、イニシアティブとコントロールのレベルを制御する。
AIの提案では、人々は積極的に書くことは少なかったが、著者であると感じた。
どちらの設計においても、AIはテキストの長さを長くし、言葉に影響を与えていると認識された。
論文 参考訳(メタデータ) (2022-08-01T13:57:11Z) - CoAuthor: Designing a Human-AI Collaborative Writing Dataset for
Exploring Language Model Capabilities [92.79451009324268]
我々は,GPT-3の創造的かつ議論的な記述を支援する能力を明らかにするために設計されたデータセットであるCoAuthorを提案する。
我々は、CoAuthorがGPT-3の言語、アイデア、コラボレーション機能に関する問題に対処できることを実証した。
インタラクション設計に関して,この作業がLMの約束や落とし穴に関して,より原則化された議論を促進する可能性について論じる。
論文 参考訳(メタデータ) (2022-01-18T07:51:57Z) - Letter-level Online Writer Identification [86.13203975836556]
我々は文字レベルのオンラインライタIDという新たな問題に焦点をあてる。
主な課題は、しばしば異なるスタイルで手紙を書くことである。
我々はこの問題をオンライン書記スタイルのばらつき(Var-O-Styles)と呼ぶ。
論文 参考訳(メタデータ) (2021-12-06T07:21:53Z) - Telling Creative Stories Using Generative Visual Aids [52.623545341588304]
私たちはライターに、開始プロンプトからクリエイティブなストーリーを書くように頼み、同じプロンプトから生成するAIモデルによって生成されたビジュアルを提供した。
コントロールグループと比較すると、ビジュアルをストーリー・ライティング・アシストとして使用した作家は、より創造的で、オリジナルで、完全で、視覚的にできるストーリーを著した。
発見は、AIによる横断的なモダリティ入力は、人間とAIの共創において創造性の異なる側面に利益をもたらすが、収束する思考を妨げることを示している。
論文 参考訳(メタデータ) (2021-10-27T23:13:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。