論文の概要: GhostWriter: Augmenting Collaborative Human-AI Writing Experiences Through Personalization and Agency
- arxiv url: http://arxiv.org/abs/2402.08855v2
- Date: Sun, 23 Mar 2025 19:08:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:29:20.851091
- Title: GhostWriter: Augmenting Collaborative Human-AI Writing Experiences Through Personalization and Agency
- Title(参考訳): GhostWriter: パーソナライズとエージェンシーによるコラボレーション型AI記述体験の拡大
- Authors: Catherine Yeh, Gonzalo Ramos, Rachel Ng, Andy Huntington, Richard Banks,
- Abstract要約: GhostWriterはAIによって強化された書き込みデザインプローブで、ユーザーは強化されたエージェンシーとパーソナライゼーションを実行できる。
GhostWriterを編集や創造的なタスクに利用した18人の被験者を対象に、ユーザーがパーソナライズされたテキストを作成するのに役立つことを観察した。
- 参考スコア(独自算出の注目度): 1.6505331001136512
- License:
- Abstract: Writing is a well-established practice to support ideation and creativity. While Large Language Models (LLMs) have become ubiquitous in providing different kinds of writing assistance to different writers, LLM-powered writing systems often fall short in capturing the nuanced personalization and control necessary for effective support and creative exploration. To address these challenges, we introduce GhostWriter, an AI-enhanced writing design probe that enables users to exercise enhanced agency and personalization. GhostWriter leverages LLMs to implicitly learn the user's intended writing style for seamless personalization, while exposing explicit teaching moments for style refinement and reflection. We study 18 participants who use GhostWriter for editing and creative tasks, observing that it helps users craft personalized text and empowers them by providing multiple ways to steer system output. Based on this study, we present insights on people's relationships with AI-assisted writing and offer design recommendations to promote user agency in similar co-creative systems.
- Abstract(参考訳): 執筆は、アイデアと創造性をサポートするために確立されたプラクティスである。
大規模言語モデル(LLM)は、様々な作家に様々な種類の筆記支援を提供することで広く普及しているが、LLMを利用した書記システムは、効果的な支援と創造的な探索に必要な、微妙なパーソナライゼーションと制御の獲得に不足することが多い。
これらの課題に対処するために、私たちは、強化されたエージェンシーとパーソナライゼーションをユーザが実行可能にする、AIに強化されたライティングデザインプローブであるGhostWriterを紹介した。
GhostWriterはLLMを活用して、ユーザーの意図した書体スタイルをシームレスなパーソナライゼーションのために暗黙的に学習し、スタイルの洗練とリフレクションのための明示的な指導モーメントを公開する。
我々は,GhostWriterを編集や創造作業に利用した18人の参加者を対象に,ユーザがパーソナライズされたテキストの作成を支援し,システムアウトプットの複数の方法を提供することを観察した。
本研究は,AIを活用した文章作成と人々の関係を考察し,類似の共創造システムにおけるユーザエージェンシーの促進を目的としたデザインレコメンデーションを提案する。
関連論文リスト
- Beyond Profile: From Surface-Level Facts to Deep Persona Simulation in LLMs [50.0874045899661]
本稿では,キャラクタの言語パターンと特徴的思考過程の両方を再現するモデルであるキャラクタボットを紹介する。
ケーススタディとしてLu Xunを用いて、17冊のエッセイコレクションから得られた4つのトレーニングタスクを提案する。
これには、外部の言語構造と知識を習得することに焦点を当てた事前訓練タスクと、3つの微調整タスクが含まれる。
言語的正確性と意見理解の3つのタスクにおいて、キャラクタボットを評価し、適応されたメトリクスのベースラインを著しく上回ることを示す。
論文 参考訳(メタデータ) (2025-02-18T16:11:54Z) - Mind the Gap! Choice Independence in Using Multilingual LLMs for Persuasive Co-Writing Tasks in Different Languages [51.96666324242191]
チャリティー広告作成タスクにおける新規筆記アシスタントのユーザ利用が、第2言語におけるAIの性能に影響を及ぼすかどうかを分析する。
我々は、これらのパターンが、生成したチャリティー広告の説得力に変換される程度を定量化する。
論文 参考訳(メタデータ) (2025-02-13T17:49:30Z) - "It was 80% me, 20% AI": Seeking Authenticity in Co-Writing with Large Language Models [97.22914355737676]
我々は、AIツールと共同で書き込む際に、著者が自分の真正な声を保存したいかどうか、どのように検討する。
本研究は,人間とAIの共創における真正性の概念を解明するものである。
読者の反応は、人間とAIの共著に対する関心が低かった。
論文 参考訳(メタデータ) (2024-11-20T04:42:32Z) - Step-Back Profiling: Distilling User History for Personalized Scientific Writing [50.481041470669766]
大きな言語モデル(LLM)は、さまざまな自然言語処理タスクに優れていますが、個人向けにパーソナライズされたコンテンツを生成するのに苦労しています。
ユーザ履歴を簡潔なプロファイルに抽出することで,LSMをパーソナライズするためのSTEP-BACK ProFIlingを導入する。
本手法は,一般パーソナライゼーションベンチマークにおいて,ベースラインを最大3.6ポイント向上させる。
論文 参考訳(メタデータ) (2024-06-20T12:58:26Z) - Towards Full Authorship with AI: Supporting Revision with AI-Generated
Views [3.109675063162349]
大きな言語モデル(LLM)は、ユーザーがプロンプトを通じてテキストを生成できるようにすることで、ツールを書く際に新しいユーザーインターフェイス(UI)パラダイムを形作っている。
このパラダイムは、ユーザからシステムへの創造的なコントロールを移行することで、書き込みプロセスにおけるユーザのオーサシップと自律性を低下させる。
テキストフォーカス(Textfocals)は,文章作成におけるユーザの役割を強調する,人間中心のアプローチを調査するためのプロトタイプである。
論文 参考訳(メタデータ) (2024-03-02T01:11:35Z) - The Future of AI-Assisted Writing [0.0]
我々は、情報検索レンズ(プル・アンド・プッシュ)を用いて、そのようなツールの比較ユーザスタディを行う。
我々の研究結果によると、ユーザーは執筆におけるAIのシームレスな支援を歓迎している。
ユーザはAI支援の書き込みツールとのコラボレーションも楽しんだが、オーナシップの欠如を感じなかった。
論文 参考訳(メタデータ) (2023-06-29T02:46:45Z) - VISAR: A Human-AI Argumentative Writing Assistant with Visual
Programming and Rapid Draft Prototyping [13.023911633052482]
VISARは、著者のブレインストーミングと、執筆コンテキストにおける階層的な目標の修正を支援するために設計されたAI対応の筆記アシスタントシステムである。
テキストの同期編集とビジュアルプログラミングによって引数構造を整理し、議論の発散による説得力を高める。
制御された研究室研究により、議論的な執筆計画プロセスの促進におけるVISARの有用性と有効性が確認された。
論文 参考訳(メタデータ) (2023-04-16T15:29:03Z) - Creative Writing with an AI-Powered Writing Assistant: Perspectives from
Professional Writers [9.120878749348986]
ニューラルネットワークモデルを用いた自然言語生成(NLG)は、AIによるクリエイティブな記述ツールを構築するという目標に、これまで以上に近づいています。
ニューラルネットワークモデルを用いた自然言語生成の最近の進歩は、AIを使ったクリエイティブな記述ツールを構築するという目標に、これまで以上に近づいている。
論文 参考訳(メタデータ) (2022-11-09T17:00:56Z) - PEER: A Collaborative Language Model [70.11876901409906]
PEER(コラボレーティブ言語モデル)は,記述プロセス全体を模倣した言語モデルである。
PEERは、ドラフトの作成、提案の追加、編集の提案、アクションの説明を提供することができる。
PEERは様々な領域にまたがって高い性能を示し,編集作業を行う。
論文 参考訳(メタデータ) (2022-08-24T16:56:47Z) - Suggestion Lists vs. Continuous Generation: Interaction Design for
Writing with Generative Models on Mobile Devices Affect Text Length, Wording
and Perceived Authorship [27.853155569154705]
モバイル端末上でAIで書き込むための2つのユーザインタフェースを提示し、イニシアティブとコントロールのレベルを制御する。
AIの提案では、人々は積極的に書くことは少なかったが、著者であると感じた。
どちらの設計においても、AIはテキストの長さを長くし、言葉に影響を与えていると認識された。
論文 参考訳(メタデータ) (2022-08-01T13:57:11Z) - CoAuthor: Designing a Human-AI Collaborative Writing Dataset for
Exploring Language Model Capabilities [92.79451009324268]
我々は,GPT-3の創造的かつ議論的な記述を支援する能力を明らかにするために設計されたデータセットであるCoAuthorを提案する。
我々は、CoAuthorがGPT-3の言語、アイデア、コラボレーション機能に関する問題に対処できることを実証した。
インタラクション設計に関して,この作業がLMの約束や落とし穴に関して,より原則化された議論を促進する可能性について論じる。
論文 参考訳(メタデータ) (2022-01-18T07:51:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。