Simultaneous estimations of quantum state and detector through multiple quantum processes
- URL: http://arxiv.org/abs/2502.11772v1
- Date: Mon, 17 Feb 2025 13:02:36 GMT
- Title: Simultaneous estimations of quantum state and detector through multiple quantum processes
- Authors: Shuixin Xiao, Weichao Liang, Yuanlong Wang, Daoyi Dong, Ian R. Petersen, Valery Ugrinovskii,
- Abstract summary: We introduce a framework, in two different bases, that utilizes multiple quantum processes to simultaneously identify a quantum state and a detector.
We prove that the mean squared error (MSE) scales as $O(1/N) $ for both QST and QDT, where $N $ denotes the total number of state copies.
- Score: 4.782967012381978
- License:
- Abstract: The estimation of all the parameters in an unknown quantum state or measurement device, commonly known as quantum state tomography (QST) and quantum detector tomography (QDT), is crucial for comprehensively characterizing and controlling quantum systems. In this paper, we introduce a framework, in two different bases, that utilizes multiple quantum processes to simultaneously identify a quantum state and a detector. We develop a closed-form algorithm for this purpose and prove that the mean squared error (MSE) scales as $O(1/N) $ for both QST and QDT, where $N $ denotes the total number of state copies. This scaling aligns with established patterns observed in previous works that addressed QST and QDT as independent tasks. Furthermore, we formulate the problem as a sum of squares (SOS) optimization problem with semialgebraic constraints, where the physical constraints of the state and detector are characterized by polynomial equalities and inequalities. The effectiveness of our proposed methods is validated through numerical examples.
Related papers
- Super Quantum Mechanics [37.69303106863453]
We introduce Super Quantum Mechanics (SQM) as a theory that considers states in Hilbert space subject to multiple quadratic constraints.
In this case, the stationary SQM problem is a quantum inverse problem with multiple applications in machine learning and artificial intelligence.
arXiv Detail & Related papers (2025-01-25T19:41:04Z) - Benchmarking Variational Quantum Eigensolvers for Entanglement Detection in Many-Body Hamiltonian Ground States [37.69303106863453]
Variational quantum algorithms (VQAs) have emerged in recent years as a promise to obtain quantum advantage.
We use a specific class of VQA named variational quantum eigensolvers (VQEs) to benchmark them at entanglement witnessing and entangled ground state detection.
Quantum circuits whose structure is inspired by the Hamiltonian interactions presented better results on cost function estimation than problem-agnostic circuits.
arXiv Detail & Related papers (2024-07-05T12:06:40Z) - A two-stage solution to quantum process tomography: error analysis and
optimal design [6.648667887733229]
We propose a two-stage solution for both trace-preserving and non-trace-preserving quantum process tomography.
Our algorithm exhibits a computational complexity of $O(MLd2)$ where $d$ is the dimension of the quantum system.
Numerical examples and testing on IBM quantum devices are presented to demonstrate the performance and efficiency of our algorithm.
arXiv Detail & Related papers (2024-02-14T05:45:11Z) - Quantum State Tomography for Matrix Product Density Operators [28.799576051288888]
Reconstruction of quantum states from experimental measurements is crucial for the verification and benchmarking of quantum devices.
Many physical quantum states, such as states generated by noisy, intermediate-scale quantum computers, are usually structured.
We establish theoretical guarantees for the stable recovery of MPOs using tools from compressive sensing and the theory of empirical processes.
arXiv Detail & Related papers (2023-06-15T18:23:55Z) - Quantum Merlin-Arthur proof systems for synthesizing quantum states [0.0]
We investigate a state synthesizing counterpart of the class NP-synthesizing.
We establish that the family of UQMA witnesses, considered as one of the most natural candidates, is in stateQMA.
We demonstrate that stateQCMA achieves perfect completeness.
arXiv Detail & Related papers (2023-03-03T12:14:07Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Certification of quantum states with hidden structure of their
bitstrings [0.0]
We propose a numerically cheap procedure to describe and distinguish quantum states.
We show that it is enough to characterize quantum states with different structure of entanglement.
Our approach can be employed to detect phase transitions of different nature in many-body quantum magnetic systems.
arXiv Detail & Related papers (2021-07-21T06:22:35Z) - Convergence of reconstructed density matrix to a pure state using
maximal entropy approach [4.084744267747294]
We propose an alternative approach to QST for the complete reconstruction of the density matrix of a quantum system in a pure state for any number of qubits.
Our goal is to provide a practical inference of a quantum system in a pure state that can find its applications in the field of quantum error mitigation on a real quantum computer.
arXiv Detail & Related papers (2021-07-02T16:58:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.