論文の概要: DoorINet: Door Heading Prediction through Inertial Deep Learning
- arxiv url: http://arxiv.org/abs/2402.09427v2
- Date: Sun, 01 Dec 2024 08:33:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-03 16:55:43.987749
- Title: DoorINet: Door Heading Prediction through Inertial Deep Learning
- Title(参考訳): DoorINet:慣性深層学習によるドアヘッド予測
- Authors: Aleksei Zakharchenko, Sharon Farber, Itzik Klein,
- Abstract要約: 慣性センサーは様々な用途で広く使われている。
このような課題に対処するため、姿勢基準系アルゴリズムを適用する。
室内環境では、磁力計は性能を低下させる干渉に悩まされる。
ドアマウント型,低コストな慣性センサから方向角を計算するための,エンドツーエンドのディープラーニングフレームワークであるDoorINetを提案する。
- 参考スコア(独自算出の注目度): 2.594420805049218
- License:
- Abstract: Inertial sensors are widely used in a variety of applications. A common task is orientation estimation. To tackle such a task, attitude and heading reference system algorithms are applied. Relying on the gyroscope readings, the accelerometer measurements are used to update the attitude angles, and magnetometer measurements are utilized to update the heading angle. In indoor environments, magnetometers suffer from interference that degrades their performance resulting in poor heading angle estimation. Therefore, applications that estimate the heading angle of moving objects, such as walking pedestrians, closets, and refrigerators, are prone to error. To circumvent such situations, we propose DoorINet, an end-to-end deep-learning framework to calculate the heading angle from door-mounted, low-cost inertial sensors without using magnetometers. To evaluate our approach, we record a unique dataset containing 391 minutes of accelerometer and gyroscope measurements and corresponding ground-truth heading angle. We show that our proposed approach outperforms commonly used, model based approaches and data-driven methods.
- Abstract(参考訳): 慣性センサーは様々な用途で広く使われている。
一般的なタスクは方向推定である。
このような課題に対処するため、姿勢基準系アルゴリズムを適用する。
ジャイロスコープの計測値に基づいて加速度計の測定値を用いて姿勢角を更新し、磁力計測定値を用いて方向角を更新する。
屋内環境では、磁力計は干渉に悩まされ、性能が低下し、方向角が推定できない。
そのため、歩行歩行者、クローゼット、冷蔵庫などの移動物体の方向角を推定するアプリケーションは、誤りを犯しがちである。
このような状況を回避するため,磁力計を使わずにドアマウント型低コスト慣性センサから方向角を計算するためのエンドツーエンドディープラーニングフレームワークDoorINetを提案する。
提案手法を評価するため,391分間の加速度計とジャイロスコープ測定,およびそれに対応する地道方向角を含む独自のデータセットを作成した。
提案手法は,モデルに基づく手法やデータ駆動手法よりも優れていることを示す。
関連論文リスト
- ARS-DETR: Aspect Ratio-Sensitive Detection Transformer for Aerial Oriented Object Detection [55.291579862817656]
既存のオブジェクト指向オブジェクト検出手法では、モデルの性能を測定するために計量AP$_50$が一般的である。
我々は、AP$_50$は本来、角度偏差に大きな耐性があるため、オブジェクト指向物体検出には適さないと主張している。
本稿では,ARS-DETR(Aspect Ratio Sensitive Oriented Object Detector with Transformer)を提案する。
論文 参考訳(メタデータ) (2023-03-09T02:20:56Z) - Deep Learning for Inertial Sensor Alignment [1.9773109138840514]
慣性測定ユニット(IMU)を装備したスマートフォンのヨー装着角度を学習し,車に装着するデータ駆動型アプローチを提案する。
提案モデルは、IMUからの加速度計とジャイロスコープのみを入力として使用する。
トレーニングされたモデルはAndroidデバイスにデプロイされ、推定されたヨー装着角度の精度をテストするためにリアルタイムで評価される。
論文 参考訳(メタデータ) (2022-12-10T07:50:29Z) - Support Vector Machine for Determining Euler Angles in an Inertial
Navigation System [55.41644538483948]
本稿では,機械学習(ML)法を用いたMEMSセンサを用いた慣性ナビゲーションシステムの精度向上について論じる。
提案アルゴリズムは,MEMSセンサに典型的なノイズの存在を正しく分類できることを実証した。
論文 参考訳(メタデータ) (2022-12-07T10:01:11Z) - Gate-based spin readout of hole quantum dots with site-dependent
$g-$factors [101.23523361398418]
ゲート型反射率計を用いたスピンリードアウトによりシリコン中の二重量子ドットを実験的に検討した。
磁気分光法により生じる反射位相信号の特徴は,2点のサイト依存の$g-$factorに関する情報を伝達する。
論文 参考訳(メタデータ) (2022-06-27T09:07:20Z) - Position fixing with cold atom gravity gradiometers [56.45088569868981]
冷間原子干渉計による部分重力勾配解を用いた自律航法の位置固定法を提案する。
標準のオープンソースグローバル重力データベースを用いて,1000kmを超える軌道に対する安定した航法解を示す。
論文 参考訳(メタデータ) (2022-04-11T16:42:32Z) - Incremental learning of LSTM framework for sensor fusion in attitude
estimation [2.064612766965483]
本稿では,Long-Short Term Memory (LSTM) ネットワークの漸進的学習による3次元空間における物体の姿勢推定手法を提案する。
慣性センサデータはLSTMネットワークに送られ、徐々に更新され、実行時に発生する動作の動的変化を組み込む。
提案フレームワークは,高度に動的な環境であっても,従来の手法と比較して,結果を著しく改善する。
論文 参考訳(メタデータ) (2021-08-04T09:03:53Z) - IDOL: Inertial Deep Orientation-Estimation and Localization [18.118289074111946]
多くのスマートフォンアプリケーションは、運動を感知するために慣性測定装置(IMU)を使用しているが、歩行者の局所化にこれらのセンサーを使用することは困難である。
近年,慣性航法の可能性が高まっている。
本稿では,まず端末の向きを推定し,次にデバイスの位置を推定するコモディティスマートフォンを用いた2段階のデータ駆動パイプラインを提案する。
論文 参考訳(メタデータ) (2021-02-08T06:41:47Z) - Deep Soft Procrustes for Markerless Volumetric Sensor Alignment [81.13055566952221]
本研究では、より堅牢なマルチセンサ空間アライメントを実現するために、マーカーレスデータ駆動対応推定を改善する。
我々は、幾何学的制約を終末的に典型的なセグメンテーションベースモデルに組み込み、対象のポーズ推定タスクと中間密な分類タスクをブリッジする。
実験により,マーカーベースの手法で同様の結果が得られ,マーカーレス手法よりも優れ,またキャリブレーション構造のポーズ変動にも頑健であることがわかった。
論文 参考訳(メタデータ) (2020-03-23T10:51:32Z) - On the Arbitrary-Oriented Object Detection: Classification based
Approaches Revisited [94.5455251250471]
まず,既存の回帰型回転検出器が抱える境界問題は,角周期性や角秩序によって引き起こされることを示した。
我々は、角予測タスクを回帰問題から分類問題に変換する。
得られた円形分布角分類問題に対して、まず、角度の周期性に対処し、隣り合う角度に対する誤差耐性を高めるために、円スムースラベル法を考案する。
論文 参考訳(メタデータ) (2020-03-12T03:23:54Z) - Under the Radar: Learning to Predict Robust Keypoints for Odometry
Estimation and Metric Localisation in Radar [26.382149876115918]
我々はOxford Radar RobotCarデータセットから実世界の280kmの走行実験を行った。
点ベースレーダオードメトリーの最先端性を改善し,誤差を最大45%低減する。
都市環境におけるレーダによる完全なマッピングとローカライズが可能なフレームワークを提供する。
論文 参考訳(メタデータ) (2020-01-29T12:59:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。