Disentangling Imperfect: A Wavelet-Infused Multilevel Heterogeneous
Network for Human Activity Recognition in Flawed Wearable Sensor Data
- URL: http://arxiv.org/abs/2402.09434v1
- Date: Fri, 26 Jan 2024 06:08:49 GMT
- Title: Disentangling Imperfect: A Wavelet-Infused Multilevel Heterogeneous
Network for Human Activity Recognition in Flawed Wearable Sensor Data
- Authors: Mengna Liu, Dong Xiang, Xu Cheng, Xiufeng Liu, Dalin Zhang, Shengyong
Chen, Christian S. Jensen
- Abstract summary: We propose a multilevel heterogeneous neural network, called MHNN, for sensor data analysis.
We utilize multilevel discrete wavelet decomposition to extract multi-resolution features from sensor data.
We equip the proposed model with heterogeneous feature extractors that enable the learning of multi-scale features.
- Score: 30.213716132980874
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The popularity and diffusion of wearable devices provides new opportunities
for sensor-based human activity recognition that leverages deep learning-based
algorithms. Although impressive advances have been made, two major challenges
remain. First, sensor data is often incomplete or noisy due to sensor placement
and other issues as well as data transmission failure, calling for imputation
of missing values, which also introduces noise. Second, human activity has
multi-scale characteristics. Thus, different groups of people and even the same
person may behave differently under different circumstances. To address these
challenges, we propose a multilevel heterogeneous neural network, called MHNN,
for sensor data analysis. We utilize multilevel discrete wavelet decomposition
to extract multi-resolution features from sensor data. This enables
distinguishing signals with different frequencies, thereby suppressing noise.
As the components resulting from the decomposition are heterogeneous, we equip
the proposed model with heterogeneous feature extractors that enable the
learning of multi-scale features. Due to the complementarity of these features,
we also include a cross aggregation module for enhancing their interactions. An
experimental study using seven publicly available datasets offers evidence that
MHNN can outperform other cutting-edge models and offers evidence of robustness
to missing values and noise. An ablation study confirms the importance of each
module.
Related papers
- Multi-scale Quaternion CNN and BiGRU with Cross Self-attention Feature Fusion for Fault Diagnosis of Bearing [5.3598912592106345]
Deep learning has led to significant advances in bearing fault diagnosis (FD)
We propose a novel FD model by integrating multiscale quaternion convolutional neural network (MQCNN), bidirectional gated recurrent unit (BiG), and cross self-attention feature fusion (CSAFF)
arXiv Detail & Related papers (2024-05-25T07:55:02Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - BSSAD: Towards A Novel Bayesian State-Space Approach for Anomaly
Detection in Multivariate Time Series [0.0]
We propose a novel and innovative approach to anomaly detection called Bayesian State-Space Anomaly Detection(BSSAD)
The design of our approach combines the strength of Bayesian state-space algorithms in predicting the next state and the effectiveness of recurrent neural networks and autoencoders.
In particular, we focus on using Bayesian state-space models of particle filters and ensemble Kalman filters.
arXiv Detail & Related papers (2023-01-30T16:21:18Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
It is necessary to consider the behavior of the signals in each sensor separately, to take into account their correlation and hidden relationships with each other.
The graph nodes can be represented as data from the different sensors, and the edges can display the influence of these data on each other.
It was proposed to construct a graph during the training of graph neural network. This allows to train models on data where the dependencies between the sensors are not known in advance.
arXiv Detail & Related papers (2022-10-20T11:03:21Z) - DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and
Temporal Relatedness [78.98998551326812]
We argue that traditional methods have rarely made use of both times-series dynamics of the data as well as the relatedness of the features from different sensors.
We propose a model, termed as DynImp, to handle different time point's missingness with nearest neighbors along feature axis.
We show that the method can exploit the multi-modality features from related sensors and also learn from history time-series dynamics to reconstruct the data under extreme missingness.
arXiv Detail & Related papers (2022-09-26T21:59:14Z) - Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals [10.866594993485226]
We propose a novel deep learning-based anomaly detection algorithm called Deep Convolutional Autoencoding Memory network (CAE-M)
We first build a Deep Convolutional Autoencoder to characterize spatial dependence of multi-sensor data with a Maximum Mean Discrepancy (MMD)
Then, we construct a Memory Network consisting of linear (Autoregressive Model) and non-linear predictions (Bigressive LSTM with Attention) to capture temporal dependence from time-series data.
arXiv Detail & Related papers (2021-07-27T06:48:20Z) - Robust Data Hiding Using Inverse Gradient Attention [82.73143630466629]
In the data hiding task, each pixel of cover images should be treated differently since they have divergent tolerabilities.
We propose a novel deep data hiding scheme with Inverse Gradient Attention (IGA), combing the ideas of adversarial learning and attention mechanism.
Empirically, extensive experiments show that the proposed model outperforms the state-of-the-art methods on two prevalent datasets.
arXiv Detail & Related papers (2020-11-21T19:08:23Z) - Multi-scale Interactive Network for Salient Object Detection [91.43066633305662]
We propose the aggregate interaction modules to integrate the features from adjacent levels.
To obtain more efficient multi-scale features, the self-interaction modules are embedded in each decoder unit.
Experimental results on five benchmark datasets demonstrate that the proposed method without any post-processing performs favorably against 23 state-of-the-art approaches.
arXiv Detail & Related papers (2020-07-17T15:41:37Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z) - Harvesting Ambient RF for Presence Detection Through Deep Learning [12.535149305258171]
This paper explores the use of ambient radio frequency (RF) signals for human presence detection through deep learning.
Using WiFi signal as an example, we demonstrate that the channel state information (CSI) obtained at the receiver contains rich information about the propagation environment.
A convolutional neural network (CNN) properly trained with both magnitude and phase information is then designed to achieve reliable presence detection.
arXiv Detail & Related papers (2020-02-13T20:35:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.