論文の概要: Progress in artificial intelligence applications based on the
combination of self-driven sensors and deep learning
- arxiv url: http://arxiv.org/abs/2402.09442v1
- Date: Tue, 30 Jan 2024 08:53:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-18 13:03:43.522039
- Title: Progress in artificial intelligence applications based on the
combination of self-driven sensors and deep learning
- Title(参考訳): 自己駆動型センサとディープラーニングを組み合わせた人工知能応用の進歩
- Authors: Weixiang Wan, Wenjian Sun, Bo Liu, Linying Pan, Jingyu Xu
- Abstract要約: Wang Zhong linと彼のチームは、マックスウェル変位電流を駆動力として、機械的刺激を直接電気信号に変換する三誘電体ナノジェネレータ(TENG)を発明した。
本稿では,優れた音声認識能力を有するTENGのインテリジェントな音響監視・認識システムについて述べる。
- 参考スコア(独自算出の注目度): 2.4347594594567155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the era of Internet of Things, how to develop a smart sensor system with
sustainable power supply, easy deployment and flexible use has become a
difficult problem to be solved. The traditional power supply has problems such
as frequent replacement or charging when in use, which limits the development
of wearable devices. The contact-to-separate friction nanogenerator (TENG) was
prepared by using polychotomy thy lene (PTFE) and aluminum (AI) foils. Human
motion energy was collected by human body arrangement, and human motion posture
was monitored according to the changes of output electrical signals. In 2012,
Academician Wang Zhong lin and his team invented the triboelectric
nanogenerator (TENG), which uses Maxwell displacement current as a driving
force to directly convert mechanical stimuli into electrical signals, so it can
be used as a self-driven sensor. Teng-based sensors have the advantages of
simple structure and high instantaneous power density, which provides an
important means for building intelligent sensor systems. At the same time,
machine learning, as a technology with low cost, short development cycle,
strong data processing ability and prediction ability, has a significant effect
on the processing of a large number of electrical signals generated by TENG,
and the combination with TENG sensors will promote the rapid development of
intelligent sensor networks in the future. Therefore, this paper is based on
the intelligent sound monitoring and recognition system of TENG, which has good
sound recognition capability, and aims to evaluate the feasibility of the sound
perception module architecture in ubiquitous sensor networks.
- Abstract(参考訳): モノのインターネット時代において、持続可能な電源、展開が容易で柔軟な使用が可能なスマートセンサーシステムの開発は、解決が難しい問題となっている。
従来の電源には、頻繁に交換や充電といった問題があり、ウェアラブルデバイスの開発を制限している。
接触分離摩擦ナノ発電機 (teng) を多孔性チレン (ptfe) とアルミニウム (ai) ホイルを用いて作製した。
人間の運動エネルギーは人体アレンジメントによって収集され、出力電気信号の変化に応じて人間の運動姿勢が監視された。
2012年、Academician Wang Zhong lin と彼のチームは、マックスウェルの変位電流を駆動力として、機械的刺激を直接電気信号に変換することで、自己駆動型センサーとして使用できるトリボ誘電体ナノジェネレータ (TENG) を発明した。
テングベースのセンサは、単純な構造と高瞬時電力密度の利点があり、インテリジェントセンサーシステムを構築する上で重要な手段となる。
同時に、低コストで開発サイクルが短く、強力なデータ処理能力と予測能力を持つ機械学習は、TENGが生成する多数の電気信号の処理に重大な影響を及ぼし、TENGセンサーと組み合わせることで、将来的にはインテリジェントセンサーネットワークの急速な開発が促進される。
そこで本稿は, 音声認識能力に優れ, ユビキタスセンサネットワークにおける音認識モジュールアーキテクチャの実現可能性を評価することを目的とした, TENG のインテリジェントな音響監視・認識システムに基づく。
関連論文リスト
- Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
産業用サイバー物理システム(ICPS)は、現代の製造業と産業にとって不可欠なコンポーネントである。
製品ライフサイクルを通じてデータをデジタル化することで、ICPSのDigital Twins(DT)は、現在の産業インフラからインテリジェントで適応的なインフラへの移行を可能にします。
産業用IoT(Industrial Internet of Things, IIoT)デバイスを利用すれば、DTを構築するためのデータを共有するメカニズムは、悪い選択問題の影響を受けやすい。
論文 参考訳(メタデータ) (2024-08-02T10:47:10Z) - A Soft e-Textile Sensor for Enhanced Deep Learning-based Shape Sensing of Soft Continuum Robots [0.3495246564946556]
ロボットナビゲーションの安全性と精度は、特にソフト連続ロボット工学の領域において最重要となる。
従来の剛性センサーは、これらのロボットの柔軟な性質とうまく統合できず、望ましくないバルクと剛性を加える。
本研究は, ソフト e-textile resistive sensor を用いて, ソフト連続体ロボットの形状認識の新しい手法を提案する。
論文 参考訳(メタデータ) (2024-04-19T05:00:25Z) - Physics-Enhanced Graph Neural Networks For Soft Sensing in Industrial Internet of Things [6.374763930914524]
産業用IoT(Industrial Internet of Things)は、製造業、産業プロセス、インフラ管理を変革している。
高度に信頼性の高いIIoTを実現するには、大量のセンサーをインストールするコスト、既存のシステムにセンサーを組み直す際の制限、センサーの設置を非現実的にする厳しい環境条件などの要因が伴う。
物理の原理をグラフベースの方法論に統合する物理強化グラフニューラルネットワーク(GNN)を提案する。
論文 参考訳(メタデータ) (2024-04-11T18:03:59Z) - Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning [97.99077847606624]
本研究は,遠隔・無線接続型NPUからなる分割計算機システムに,覚醒無線機構を組み込んだ新しいアーキテクチャを提案する。
覚醒無線に基づくニューロモルフィックスプリットコンピューティングシステムの設計における重要な課題は、検知、覚醒信号検出、意思決定のためのしきい値の選択である。
論文 参考訳(メタデータ) (2024-04-02T10:19:04Z) - A Plug-in Tiny AI Module for Intelligent and Selective Sensor Data
Transmission [10.174575604689391]
本稿では、インテリジェントなデータ伝送機能を備えたセンシングフレームワークを実現するための新しいセンシングモジュールを提案する。
センサの近くに置かれる高効率機械学習モデルを統合する。
このモデルは,無関係な情報を破棄しながら,貴重なデータのみを送信するセンサシステムに対して,迅速なフィードバックを提供する。
論文 参考訳(メタデータ) (2024-02-03T05:41:39Z) - On-Device Soft Sensors: Real-Time Fluid Flow Estimation from Level Sensor Data [19.835810073852244]
この研究は、クラウド上にソフトセンサーを配置する代わりに、デバイス上でのソフトセンサーの採用にシフトし、効率の向上とデータセキュリティの強化を約束する。
本手法は,無線センサネットワーク内のデバイスに直接人工知能(AI)を配置することにより,エネルギー効率を大幅に向上させる。
論文 参考訳(メタデータ) (2023-11-25T14:18:29Z) - MultiIoT: Benchmarking Machine Learning for the Internet of Things [70.74131118309967]
次世代の機械学習システムは、物理的世界に対する知覚と相互作用に長けなければならない。
運動、熱、位置情報、深度、無線信号、ビデオ、オーディオからの知覚データは、物理環境の状態をモデル化するためにますます使われています。
既存の取り組みは、しばしば単一の感覚的モダリティまたは予測タスクに特化している。
本稿は、12のモダリティと8つの現実世界タスクから115万以上のサンプルを含む、これまでで最も拡張的で統一されたIoTベンチマークであるMultiIoTを提案する。
論文 参考訳(メタデータ) (2023-11-10T18:13:08Z) - A Health Monitoring System Based on Flexible Triboelectric Sensors for
Intelligence Medical Internet of Things and its Applications in Virtual
Reality [4.522609963399036]
Internet of Medical Things (IoMT)は、IoT(Internet of Things)テクノロジと医療アプリケーションを組み合わせたプラットフォームである。
本研究では、フレキシブルな三体電センサと深層学習支援データ分析の相乗的統合により、堅牢でインテリジェントなIoMTシステムを設計した。
パーキンソン病(PD)患者の手首の動きを検知・解析するために4つの三体電センサをリストバンドに組み込んだ。
この革新的なアプローチにより、PD患者の微妙な動きと微妙な運動を正確に捉え、精査することが可能となり、患者の状況に対する洞察と総合的な評価が得られた。
論文 参考訳(メタデータ) (2023-09-13T01:01:16Z) - Low-cost Efficient Wireless Intelligent Sensor (LEWIS) for Engineering,
Research, and Education [72.2614468437919]
センサによって決定を下すスマートシティのビジョンは、これまで実現されていない。
土木技術者はセンサー技術に関する知識を欠いている。
センサーに関連する電気部品とコンピュータの知識は、土木技術者にとって依然として課題である。
論文 参考訳(メタデータ) (2023-03-23T21:49:26Z) - DensePose From WiFi [86.61881052177228]
WiFi信号の位相と振幅を24のヒト領域内の紫外線座標にマッピングするディープニューラルネットワークを開発した。
本モデルでは,複数の被験者の密集したポーズを,画像に基づくアプローチと同等の性能で推定することができる。
論文 参考訳(メタデータ) (2022-12-31T16:48:43Z) - EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies
on Signal Sensing Technologies and Computational Intelligence Approaches and
their Applications [65.32004302942218]
Brain-Computer Interface (BCI) はユーザとシステム間の強力なコミュニケーションツールである。
近年の技術進歩は、脳波(EEG)に基づく翻訳医療用BCIへの関心が高まっている。
論文 参考訳(メタデータ) (2020-01-28T10:36:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。