論文の概要: Practitioners' Challenges and Perceptions of CI Build Failure Predictions at Atlassian
- arxiv url: http://arxiv.org/abs/2402.09651v2
- Date: Tue, 14 May 2024 04:44:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 19:11:33.154030
- Title: Practitioners' Challenges and Perceptions of CI Build Failure Predictions at Atlassian
- Title(参考訳): AtlassianにおけるCIビルドの失敗予測の実践者による課題と認識
- Authors: Yang Hong, Chakkrit Tantithamthavorn, Jirat Pasuksmit, Patanamon Thongtanunam, Arik Friedman, Xing Zhao, Anton Krasikov,
- Abstract要約: 我々は、Atlassianの製品開発全体にわたるCIビルドの失敗を調査する実証的研究について報告する。
私たちの定量的分析では、リポジトリの寸法がCIビルドの失敗に影響を及ぼす重要な要因であることが分かりました。
私たちは、CIビルド予測がCIビルドの失敗に対する積極的な洞察を提供するだけでなく、チームの意思決定を促進することができることに気づきました。
- 参考スコア(独自算出の注目度): 9.781790288871
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continuous Integration (CI) build failures could significantly impact the software development process and teams, such as delaying the release of new features and reducing developers' productivity. In this work, we report on an empirical study that investigates CI build failures throughout product development at Atlassian. Our quantitative analysis found that the repository dimension is the key factor influencing CI build failures. In addition, our qualitative survey revealed that Atlassian developers perceive CI build failures as challenging issues in practice. Furthermore, we found that the CI build prediction can not only provide proactive insight into CI build failures but also facilitate the team's decision-making. Our study sheds light on the challenges and expectations involved in integrating CI build prediction tools into the Bitbucket environment, providing valuable insights for enhancing CI processes.
- Abstract(参考訳): 継続的インテグレーション(CI)ビルドの失敗は、新機能のリリースの遅れや開発者の生産性の低下など、ソフトウェア開発プロセスやチームに大きな影響を与える可能性がある。
本稿では,Atlassianの製品開発全体にわたってCIビルドの失敗を調査する実証的研究について報告する。
私たちの定量的分析では、リポジトリの寸法がCIビルドの失敗に影響を及ぼす重要な要因であることが分かりました。
さらに、当社の質的な調査によると、Atlassianの開発者は、CIビルドの失敗を実践上の課題として認識している。
さらに、CIビルドの予測は、CIビルドの失敗に対する積極的な洞察を提供するだけでなく、チームの意思決定を促進することができることもわかりました。
当社の研究では、CIビルド予測ツールをBitbucket環境に統合する上での課題と期待について光を当て、CIプロセスの強化に有用な洞察を提供しています。
関連論文リスト
- Leveraging Large Language Models for Efficient Failure Analysis in Game Development [47.618236610219554]
本稿では,テストの失敗の原因となるコードの変更を自動的に識別する手法を提案する。
このメソッドは、LLM(Large Language Models)を利用して、エラーメッセージと対応するコード変更を関連付ける。
当社のアプローチは新たに作成したデータセットで71%の精度に達しています。
論文 参考訳(メタデータ) (2024-06-11T09:21:50Z) - Detecting Continuous Integration Skip : A Reinforcement Learning-based Approach [0.4297070083645049]
継続的統合(CI)プラクティスは、自動ビルドとテストプロセスを採用することで、コード変更のシームレスな統合を促進する。
Travis CIやGitHub Actionsといった一部のフレームワークは、CIプロセスの簡素化と強化に大きく貢献している。
開発者はCI実行に適したコミットやスキップの候補としてコミットを正確にフラグ付けすることの難しさに悩まされ続けている。
論文 参考訳(メタデータ) (2024-05-15T18:48:57Z) - Not All Contexts Are Equal: Teaching LLMs Credibility-aware Generation [47.42366169887162]
Credibility-Aware Generation (CAG) は、信頼性に基づいて情報を識別・処理する能力を備えたモデルを提供することを目的としている。
提案モデルは,生成に対する信頼性を効果的に理解し活用し,検索強化により他のモデルよりも大幅に優れ,ノイズの多い文書による破壊に対するレジリエンスを示す。
論文 参考訳(メタデータ) (2024-04-10T07:56:26Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z) - Code Ownership in Open-Source AI Software Security [18.779538756226298]
コードオーナシップのメトリクスを使用して、5つの著名なオープンソースAIソフトウェアプロジェクトにおける潜在的な脆弱性との相関を調査します。
この結果は、ハイレベルなオーナシップ(マイナーなコントリビュータの数が限られている)と脆弱性の減少との間に肯定的な関係があることを示唆している。
これらの新しいコードオーナシップメトリクスによって、プロジェクトキュレーターや品質保証の専門家が現場プロジェクトを評価し、ベンチマークするのを助けるために、Pythonベースのコマンドラインアプリケーションを実装しました。
論文 参考訳(メタデータ) (2023-12-18T00:37:29Z) - Continuous Integration and Software Quality: A Causal Explanatory Study [0.46040036610482665]
継続的インテグレーション(CI)は、チーム間のコード統合のコストとリスクを低減することを目的とした、ソフトウェアエンジニアリングのプラクティスである。
最近の実証研究により、CIとソフトウェア品質(SQ)の関連性が確認されている。
論文 参考訳(メタデータ) (2023-09-18T23:10:34Z) - The RoboDepth Challenge: Methods and Advancements Towards Robust Depth
Estimation [91.60650535480613]
我々は,RoboDepth Challengeの優勝ソリューションを要約する。
この課題は、堅牢なOoD深度推定を容易にし、前進させるように設計された。
この課題が、堅牢で信頼性の高い深度推定に関する将来の研究の基盤となることを願っている。
論文 参考訳(メタデータ) (2023-07-27T17:59:56Z) - The Impact of a Continuous Integration Service on the Delivery Time of
Merged Pull Requests [8.108605385023939]
私たちは、CIサービス(TravisCI)を採用することで、統合されたPRを提供する時間を短縮できるかどうか調査する。
当社の結果から,CIサービスの採用がマージPRのデリバリを迅速化するとは限らないことが分かる。
CIが提供する自動化と開発者の自信の向上は、CIサービスを採用する上で重要なメリットである。
論文 参考訳(メタデータ) (2023-05-25T10:59:35Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z) - Transient Information Adaptation of Artificial Intelligence: Towards
Sustainable Data Processes in Complex Projects [0.0]
大規模プロジェクトは複雑なデータポイントの配列を描画しながら複雑な設定で運用されるようになっている。
世界のメガプロジェクトの90%は計画された目標達成に失敗している。
人工知能の概念に対する関心は、プロジェクトライフサイクルを通じてプロジェクトマネージャの認知能力を高めることを目指している。
論文 参考訳(メタデータ) (2021-03-27T22:28:52Z) - Collaborative Intelligence: Challenges and Opportunities [80.22863657331622]
本稿は,ciにおける技術の現状を調査し,機能圧縮,エラーレジリエンス,プライバシ,システムレベル設計における信号処理関連の課題を特に強調する。
論文 参考訳(メタデータ) (2021-02-13T01:24:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。