論文の概要: CodeMind: A Framework to Challenge Large Language Models for Code
Reasoning
- arxiv url: http://arxiv.org/abs/2402.09664v1
- Date: Thu, 15 Feb 2024 02:24:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-16 17:17:19.507100
- Title: CodeMind: A Framework to Challenge Large Language Models for Code
Reasoning
- Title(参考訳): CodeMind: コード推論のための大規模言語モデルに挑戦するフレームワーク
- Authors: Changshu Liu, Shizhuo Dylan Zhang, Reyhaneh Jabbarvand
- Abstract要約: 大規模言語モデル(LLM)のコード推論能力を評価するために設計されたフレームワークであるCodeMindを紹介する。
CodeMindは、Independent Execution Reasoning (IER)、Dependent Execution Reasoning (DER)、Specification Reasoning (SR)の3つのコード推論タスクをサポートしている。
- 参考スコア(独自算出の注目度): 1.644043499620662
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solely relying on test passing to evaluate Large Language Models (LLMs) for
code synthesis may result in unfair assessment or promoting models with data
leakage. As an alternative, we introduce CodeMind, a framework designed to
gauge the code reasoning abilities of LLMs. CodeMind currently supports three
code reasoning tasks: Independent Execution Reasoning (IER), Dependent
Execution Reasoning (DER), and Specification Reasoning (SR). The first two
evaluate models to predict the execution output of an arbitrary code or code
the model could correctly synthesize. The third one evaluates the extent to
which LLMs implement the specified expected behavior. Our extensive evaluation
of nine LLMs across five benchmarks in two different programming languages
using CodeMind shows that LLMs fairly understand control flow constructs and,
in general, are capable of reasoning how inputs evolve to output, specifically
for simple programs and the ones they can correctly synthesize. However, their
performance drops for code with higher complexity, non-trivial logical and
arithmetic operators, non-primitive types, and API calls. Furthermore, we
observe that, while correlated, specification reasoning (essential for code
synthesis) does not imply execution reasoning (essential for broader
programming tasks such as testing and debugging): ranking LLMs based on test
passing can be different compared to code reasoning.
- Abstract(参考訳): コード合成にLLM(Large Language Models)を評価するためにテストパスに頼ることは、不公平な評価やデータ漏洩を伴うモデルの促進につながる可能性がある。
代替として,LLMのコード推論能力を評価するためのフレームワークであるCodeMindを紹介する。
CodeMindは現在、Independent Execution Reasoning (IER)、Dependent Execution Reasoning (DER)、Specification Reasoning (SR)の3つのコード推論タスクをサポートしている。
最初の2つは、任意のコードやモデルが正しく合成できるコードの実行出力を予測するモデルを評価する。
第3の方法は、llmが指定された期待される動作を実装する程度を評価する。
CodeMindを用いた5つのベンチマークにおける9つのLLMの広範囲な評価は、LLMが制御フロー構造を十分に理解しており、一般的には、入力がどのように出力に進化するかを推論できることを示している。
しかし、高い複雑性、非自明な論理演算子と算術演算子、非プリミティブ型、api呼び出しを持つコードではパフォーマンスが低下する。
さらに、関連づけられた仕様推論(コード合成に必須)は実行推論(テストやデバッグのような幅広いプログラミングタスクに必須)を含まないことを観察する。
関連論文リスト
- Case2Code: Learning Inductive Reasoning with Synthetic Data [105.89741089673575]
プログラムの表現性と正確性を利用したtextbfCase2Code タスクを提案する。
まず、合成したCase2Codeタスクにおける代表LLMを評価し、LLMにおいてケース・ツー・コード誘導が困難であることを実証する。
実験結果から,このような帰納的学習は,Case2Codeの性能だけでなく,学習用LLMの各種符号化能力の向上にも寄与することがわかった。
論文 参考訳(メタデータ) (2024-07-17T11:35:00Z) - Source Code Summarization in the Era of Large Language Models [23.715005053430957]
大規模言語モデル(LLM)は、コード関連のタスクのパフォーマンスを大幅に向上させた。
本稿では,LLMにおけるコード要約の体系的および包括的研究を行う。
論文 参考訳(メタデータ) (2024-07-09T05:48:42Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - Bug In the Code Stack: Can LLMs Find Bugs in Large Python Code Stacks [1.3586572110652484]
本研究では,大規模文書から文脈情報を取得する上でのLLM(Large Language Models)の機能について検討する。
我々のベンチマークであるBug In The Code Stack (BICS)は、大規模なソースコード内の単純な構文バグを識別するLLMの能力を評価するために設計されている。
その結果,(1)検索タスクのテキストベースの環境に比べ,コードベースの環境の方が有意に困難であり,(2)異なるモデル間の性能差が大きく,(3)コンテキスト長と性能劣化との間には顕著な相関関係があることが判明した。
論文 参考訳(メタデータ) (2024-06-21T17:37:10Z) - Reasoning Runtime Behavior of a Program with LLM: How Far Are We? [25.451857140926943]
コードのための大規模な言語モデル(LLM)は、強力なコード理解と生成能力を示している。
コード推論は、コードLLMの最も重要な能力の1つである。
本稿では,プログラム実行によるLLMのコード推論能力と一貫性を評価するためのフレームワークであるRevalを提案する。
論文 参考訳(メタデータ) (2024-03-25T05:37:16Z) - Code Prompting Elicits Conditional Reasoning Abilities in Text+Code LLMs [65.2379940117181]
自然言語の問題をコードに変換する一連のプロンプトであるコードプロンプトを導入します。
コードプロンプトは複数のLLMに対して高速に向上することがわかった。
GPT 3.5を解析した結果,入力問題のコードフォーマッティングが性能向上に不可欠であることが判明した。
論文 参考訳(メタデータ) (2024-01-18T15:32:24Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - LINC: A Neurosymbolic Approach for Logical Reasoning by Combining
Language Models with First-Order Logic Provers [60.009969929857704]
論理的推論は、科学、数学、社会に潜在的影響を与える可能性のある人工知能にとって重要なタスクである。
本研究では、LINCと呼ばれるモジュール型ニューロシンボリックプログラミングのようなタスクを再構成する。
我々は,FOLIOとProofWriterのバランスの取れたサブセットに対して,ほぼすべての実験条件下で,3つの異なるモデルに対して顕著な性能向上を観察した。
論文 参考訳(メタデータ) (2023-10-23T17:58:40Z) - Coarse-Tuning Models of Code with Reinforcement Learning Feedback [0.0]
コード上で事前訓練されたLarge Language Models (LLM) が、プログラム合成の主流のアプローチとして登場した。
コードの品質を評価する接地関数からのフィードバックを用いて、強化学習により事前学習したLLMをさらに訓練するRCCFを提案する。
論文 参考訳(メタデータ) (2023-05-25T22:09:08Z) - CodeT5+: Open Code Large Language Models for Code Understanding and
Generation [72.1638273937025]
大きな言語モデル (LLM) は膨大なソースコードで事前訓練されており、コードインテリジェンスにおいて顕著な進歩を遂げている。
CodeT5+は、コンポーネントモジュールを柔軟に組み合わせて、幅広い下流のコードタスクに適合させることができるコードのためのエンコーダ-デコーダLLMのファミリーである。
我々は、ゼロショット、微調整、命令調整を含む20以上のコード関連ベンチマークでCodeT5+を広範囲に評価した。
論文 参考訳(メタデータ) (2023-05-13T14:23:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。