論文の概要: A Tool for In-depth Analysis of Code Execution Reasoning of Large Language Models
- arxiv url: http://arxiv.org/abs/2501.18482v1
- Date: Thu, 30 Jan 2025 16:56:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 15:12:32.996725
- Title: A Tool for In-depth Analysis of Code Execution Reasoning of Large Language Models
- Title(参考訳): 大規模言語モデルのコード実行推論の深さ解析ツール
- Authors: Changshu Liu, Reyhaneh Jabbarvand,
- Abstract要約: 本稿では,コード実行推論フレームワークの結果を分析する一連のツールであるExeRScopeを紹介する。
分析は、より多くのベンチマークを設計することなく、同様の特性を持つコードに一般化することができる。
- 参考スコア(独自算出の注目度): 1.644043499620662
- License:
- Abstract: Code Executing Reasoning is becoming a new non-functional metric that assesses the ability of large language models (LLMs) in programming tasks. State-of-the-art frameworks (CodeMind or REval) and benchmarks (CruxEval) usually focus on LLM's prediction of a given code's input/output or intermediate variable states/values on limited programs. However, there is no tool for more in-depth analysis of the results. Without such a tool, the observations about LLM's code execution reasoning cannot be generalized to more datasets, preventing the research community and practitioners from devising the next generation of LLMs with better code execution reasoning abilities. This paper introduces ExeRScope, a series of tools and heuristics to analyze the result of code execution reasoning frameworks to understand better the impact of code properties in the studied benchmarks on the code execution reasoning. With such tooling, analysis can be generalized to code with similar properties without the urgent need to design more benchmarks, which is a cumbersome effort.
- Abstract(参考訳): Code Executing Reasoningは、プログラムタスクにおける大規模言語モデル(LLM)の機能を評価する、新しい非機能メトリックになりつつある。
最先端のフレームワーク(CodeMindまたはReval)とベンチマーク(CruxEval)は、通常、制限されたプログラムの入力/出力または中間変数状態/値に関するLLMの予測に焦点を当てている。
しかし、結果の詳細な分析のためのツールは存在しない。
このようなツールがなければ、LCMのコード実行推論に関する観察をより多くのデータセットに一般化することはできない。
本稿では、コード実行推論フレームワークの結果を分析するためのツールとヒューリスティックであるExeRScopeを紹介し、コード実行推論に対するベンチマークにおけるコードプロパティの影響をよりよく理解する。
このようなツールを使えば、より多くのベンチマークを設計する必要なく、分析を同様のプロパティでコードに一般化することができます。
関連論文リスト
- ToolCoder: A Systematic Code-Empowered Tool Learning Framework for Large Language Models [49.04652315815501]
ツール学習は、大規模な言語モデル(LLM)にとって、外部ツールとのインタラクションを通じて、複雑な現実世界のタスクを解決する重要な機能として登場した。
本稿では,ツール学習をコード生成タスクとして再編成する新しいフレームワークであるToolCoderを提案する。
論文 参考訳(メタデータ) (2025-02-17T03:42:28Z) - SURGE: On the Potential of Large Language Models as General-Purpose Surrogate Code Executors [0.0]
大規模言語モデル(LLM)は、コード理解やコード生成など、コード関連のタスクにおいて顕著な機能を示している。
しかしながら、LLMが汎用的なサロゲートコードエグゼキュータとして機能するかどうかについても、同様に重要で未解明の疑問がある。
本研究は,LLMを代用コード実行子として使用することの実現可能性に関する実証的な知見を提供する。
論文 参考訳(メタデータ) (2025-02-16T15:38:19Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - Perplexed: Understanding When Large Language Models are Confused [3.4208414448496027]
本稿では,言語モデルが複雑になる場所を探索するライブラリであるperplexedを紹介する。
Codetokenizerと呼ばれるコードモデルの解析を支援するために構築した追加ツールを使用して、コード生成のためのLLM(Large Language Models)に焦点を当てたケーススタディを実施しました。
我々の研究したコードLLMは、コードが構文的に正しくないコーディング構造において、最悪のパフォーマンスを示しました。
論文 参考訳(メタデータ) (2024-04-09T22:03:39Z) - Reasoning Runtime Behavior of a Program with LLM: How Far Are We? [25.451857140926943]
コードのための大規模な言語モデル(LLM)は、強力なコード理解と生成能力を示している。
コード推論は、コードLLMの最も重要な能力の1つである。
本稿では,プログラム実行によるLLMのコード推論能力と一貫性を評価するためのフレームワークであるRevalを提案する。
論文 参考訳(メタデータ) (2024-03-25T05:37:16Z) - CodeMind: A Framework to Challenge Large Language Models for Code Reasoning [1.4027589547318842]
大規模言語モデル(LLM)のコード推論能力を評価するために設計されたフレームワークであるCodeMindを紹介する。
CodeMindは、Independent Execution Reasoning (IER)、Dependent Execution Reasoning (DER)、Specification Reasoning (SR)の3つのコード推論タスクをサポートしている。
論文 参考訳(メタデータ) (2024-02-15T02:24:46Z) - Efficient Tool Use with Chain-of-Abstraction Reasoning [63.08202389132155]
大規模言語モデル(LLM)は、現実世界の知識に対する推論の基礎となる必要がある。
マルチステップ推論問題におけるツールの実行には,微調整LDMエージェントの課題が残されている。
マルチステップ推論におけるツールの活用方法として, LLM の新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-30T21:53:30Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
本稿では,新しいタスク,CLOMO(Counterfactual Logical Modification)と高品質な人間アノテーションベンチマークを紹介する。
このタスクでは、LLMは所定の論理的関係を維持するために、与えられた議論的テキストを順応的に変更しなければなりません。
LLMの自然言語出力を直接評価する革新的な評価指標である自己評価スコア(SES)を提案する。
論文 参考訳(メタデータ) (2023-11-29T08:29:54Z) - Large Language Models for Code Analysis: Do LLMs Really Do Their Job? [13.48555476110316]
大規模言語モデル(LLM)は、自然言語理解とプログラミングコード処理タスクの領域において大きな可能性を証明している。
本稿では、コード解析タスクの実行におけるLLMの能力を総合的に評価する。
論文 参考訳(メタデータ) (2023-10-18T22:02:43Z) - CREATOR: Tool Creation for Disentangling Abstract and Concrete Reasoning of Large Language Models [74.22729793816451]
大規模言語モデル(LLM)はツールの利用において大きな進歩を遂げているが、その能力はAPIの可用性によって制限されている。
我々は、LCMがドキュメンテーションとコード実現を使って独自のツールを作成できる新しいフレームワークCREATORを提案する。
我々は,MATH と TabMWP のベンチマークで CREATOR を評価する。
論文 参考訳(メタデータ) (2023-05-23T17:51:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。