論文の概要: A Tool for In-depth Analysis of Code Execution Reasoning of Large Language Models
- arxiv url: http://arxiv.org/abs/2501.18482v1
- Date: Thu, 30 Jan 2025 16:56:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 22:50:04.253346
- Title: A Tool for In-depth Analysis of Code Execution Reasoning of Large Language Models
- Title(参考訳): 大規模言語モデルのコード実行推論の深さ解析ツール
- Authors: Changshu Liu, Reyhaneh Jabbarvand,
- Abstract要約: 本稿では,コード実行推論フレームワークの結果を分析する一連のツールであるExeRScopeを紹介する。
分析は、より多くのベンチマークを設計することなく、同様の特性を持つコードに一般化することができる。
- 参考スコア(独自算出の注目度): 1.644043499620662
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Code Executing Reasoning is becoming a new non-functional metric that assesses the ability of large language models (LLMs) in programming tasks. State-of-the-art frameworks (CodeMind or REval) and benchmarks (CruxEval) usually focus on LLM's prediction of a given code's input/output or intermediate variable states/values on limited programs. However, there is no tool for more in-depth analysis of the results. Without such a tool, the observations about LLM's code execution reasoning cannot be generalized to more datasets, preventing the research community and practitioners from devising the next generation of LLMs with better code execution reasoning abilities. This paper introduces ExeRScope, a series of tools and heuristics to analyze the result of code execution reasoning frameworks to understand better the impact of code properties in the studied benchmarks on the code execution reasoning. With such tooling, analysis can be generalized to code with similar properties without the urgent need to design more benchmarks, which is a cumbersome effort.
- Abstract(参考訳): Code Executing Reasoningは、プログラムタスクにおける大規模言語モデル(LLM)の機能を評価する、新しい非機能メトリックになりつつある。
最先端のフレームワーク(CodeMindまたはReval)とベンチマーク(CruxEval)は、通常、制限されたプログラムの入力/出力または中間変数状態/値に関するLLMの予測に焦点を当てている。
しかし、結果の詳細な分析のためのツールは存在しない。
このようなツールがなければ、LCMのコード実行推論に関する観察をより多くのデータセットに一般化することはできない。
本稿では、コード実行推論フレームワークの結果を分析するためのツールとヒューリスティックであるExeRScopeを紹介し、コード実行推論に対するベンチマークにおけるコードプロパティの影響をよりよく理解する。
このようなツールを使えば、より多くのベンチマークを設計する必要なく、分析を同様のプロパティでコードに一般化することができます。
関連論文リスト
- On Explaining (Large) Language Models For Code Using Global Code-Based Explanations [45.126233498200534]
Language Models for Code (LLM4Code)は、ソフトウェア工学(SE)のランドスケープを大きく変えた。
我々は、厳密な数学的基盤を持つ手法であるコード論理(Code$Q$)を導入し、個々のコード予測を説明できるトークンのサブセットを特定する。
評価の結果、Code$Q$は意味のある入力概念(すなわち自然言語粒子)が出力生成にどのように影響するかを説明するための強力な解釈可能性法であることがわかった。
論文 参考訳(メタデータ) (2025-03-21T01:00:45Z) - Code to Think, Think to Code: A Survey on Code-Enhanced Reasoning and Reasoning-Driven Code Intelligence in LLMs [53.00384299879513]
大規模言語モデル(LLM)では、コードと推論が互いに強化される。
コードは検証可能な実行パスを提供し、論理的な分解を強制し、実行時の検証を可能にする。
我々は,このシナジーを強化するために,重要な課題を特定し,今後の研究方向性を提案する。
論文 参考訳(メタデータ) (2025-02-26T18:55:42Z) - SURGE: On the Potential of Large Language Models as General-Purpose Surrogate Code Executors [5.247363735860479]
大規模言語モデル(LLM)は、コードに関連するタスクにおいて顕著な機能を示した。
LLMが多様なプログラムを理解し処理する能力を考えると、汎用的なサロゲートモデルを構築する上で有望な方向性を示す。
SURGEは、1160ドル(約1万1000円)の価格問題で、8ドル(約8万3000円)の鍵となる側面をカバーしたベンチマークです。
オープンソースおよびプロプライエタリ LLM の実証分析を通じて,スケーリング法則,データ効率,予測精度を検討した。
論文 参考訳(メタデータ) (2025-02-16T15:38:19Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - Perplexed: Understanding When Large Language Models are Confused [3.4208414448496027]
本稿では,言語モデルが複雑になる場所を探索するライブラリであるperplexedを紹介する。
Codetokenizerと呼ばれるコードモデルの解析を支援するために構築した追加ツールを使用して、コード生成のためのLLM(Large Language Models)に焦点を当てたケーススタディを実施しました。
我々の研究したコードLLMは、コードが構文的に正しくないコーディング構造において、最悪のパフォーマンスを示しました。
論文 参考訳(メタデータ) (2024-04-09T22:03:39Z) - Reasoning Runtime Behavior of a Program with LLM: How Far Are We? [25.451857140926943]
コードのための大規模な言語モデル(LLM)は、強力なコード理解と生成能力を示している。
コード推論は、コードLLMの最も重要な能力の1つである。
本稿では,プログラム実行によるLLMのコード推論能力と一貫性を評価するためのフレームワークであるRevalを提案する。
論文 参考訳(メタデータ) (2024-03-25T05:37:16Z) - CodeMind: A Framework to Challenge Large Language Models for Code Reasoning [1.4027589547318842]
大規模言語モデル(LLM)のコード推論能力を評価するために設計されたフレームワークであるCodeMindを紹介する。
CodeMindは、Independent Execution Reasoning (IER)、Dependent Execution Reasoning (DER)、Specification Reasoning (SR)の3つのコード推論タスクをサポートしている。
論文 参考訳(メタデータ) (2024-02-15T02:24:46Z) - Efficient Tool Use with Chain-of-Abstraction Reasoning [63.08202389132155]
大規模言語モデル(LLM)は、現実世界の知識に対する推論の基礎となる必要がある。
マルチステップ推論問題におけるツールの実行には,微調整LDMエージェントの課題が残されている。
マルチステップ推論におけるツールの活用方法として, LLM の新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-30T21:53:30Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
本稿では,新しいタスク,CLOMO(Counterfactual Logical Modification)と高品質な人間アノテーションベンチマークを紹介する。
このタスクでは、LLMは所定の論理的関係を維持するために、与えられた議論的テキストを順応的に変更しなければなりません。
LLMの自然言語出力を直接評価する革新的な評価指標である自己評価スコア(SES)を提案する。
論文 参考訳(メタデータ) (2023-11-29T08:29:54Z) - Large Language Models for Code Analysis: Do LLMs Really Do Their Job? [13.48555476110316]
大規模言語モデル(LLM)は、自然言語理解とプログラミングコード処理タスクの領域において大きな可能性を証明している。
本稿では、コード解析タスクの実行におけるLLMの能力を総合的に評価する。
論文 参考訳(メタデータ) (2023-10-18T22:02:43Z) - CREATOR: Tool Creation for Disentangling Abstract and Concrete Reasoning of Large Language Models [74.22729793816451]
大規模言語モデル(LLM)はツールの利用において大きな進歩を遂げているが、その能力はAPIの可用性によって制限されている。
我々は、LCMがドキュメンテーションとコード実現を使って独自のツールを作成できる新しいフレームワークCREATORを提案する。
我々は,MATH と TabMWP のベンチマークで CREATOR を評価する。
論文 参考訳(メタデータ) (2023-05-23T17:51:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。