論文の概要: Current and future roles of artificial intelligence in retinopathy of
prematurity
- arxiv url: http://arxiv.org/abs/2402.09975v1
- Date: Thu, 15 Feb 2024 14:35:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-16 15:25:24.860416
- Title: Current and future roles of artificial intelligence in retinopathy of
prematurity
- Title(参考訳): 未熟児網膜症における人工知能の現状と将来
- Authors: Ali Jafarizadeh, Shadi Farabi Maleki, Parnia Pouya, Navid Sobhi,
Mirsaeed Abdollahi, Siamak Pedrammehr, Chee Peng Lim, Houshyar Asadi,
Roohallah Alizadehsani, Ru-San Tan, Sheikh Mohammad Shariful Islam, U.
Rajendra Acharya
- Abstract要約: 未熟児の網膜症 (ROP) は重篤な病態である。
近年のディープラーニング(DL)、特に畳み込みニューラルネットワーク(CNN)は、ROPの検出と分類を大幅に改善している。
i-ROP 深層学習 (i-ROP-DL) システムもまた,高次疾患の検出を約束し,信頼性なROP 診断能を提供する。
- 参考スコア(独自算出の注目度): 14.333209377077058
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Retinopathy of prematurity (ROP) is a severe condition affecting premature
infants, leading to abnormal retinal blood vessel growth, retinal detachment,
and potential blindness. While semi-automated systems have been used in the
past to diagnose ROP-related plus disease by quantifying retinal vessel
features, traditional machine learning (ML) models face challenges like
accuracy and overfitting. Recent advancements in deep learning (DL), especially
convolutional neural networks (CNNs), have significantly improved ROP detection
and classification. The i-ROP deep learning (i-ROP-DL) system also shows
promise in detecting plus disease, offering reliable ROP diagnosis potential.
This research comprehensively examines the contemporary progress and challenges
associated with using retinal imaging and artificial intelligence (AI) to
detect ROP, offering valuable insights that can guide further investigation in
this domain. Based on 89 original studies in this field (out of 1487 studies
that were comprehensively reviewed), we concluded that traditional methods for
ROP diagnosis suffer from subjectivity and manual analysis, leading to
inconsistent clinical decisions. AI holds great promise for improving ROP
management. This review explores AI's potential in ROP detection,
classification, diagnosis, and prognosis.
- Abstract(参考訳): 未熟児網膜症(英: retinopathy of prematurity, rop)は、未熟児の網膜血管の異常成長、網膜剥離、潜在的な失明を引き起こす重篤な疾患である。
半自動システムは過去に網膜血管の特徴を定量化することでROP関連と疾患の診断に用いられてきたが、従来の機械学習(ML)モデルは精度や過剰適合といった課題に直面している。
近年のディープラーニング(DL)、特に畳み込みニューラルネットワーク(CNN)は、ROPの検出と分類を大幅に改善している。
i-ROP 深層学習 (i-ROP-DL) システムもまた,高次疾患の検出を約束し,信頼性なROP 診断能を提供する。
本研究は、網膜イメージングと人工知能(AI)を用いたROP検出の現代的進歩と課題を包括的に検討し、この領域におけるさらなる研究を導く貴重な洞察を提供する。
この分野における89のオリジナル研究(総括的に検討された1487の研究のうち)に基づき、rop診断の伝統的な方法は主観性と手作業による分析に苦しめられ、臨床判断に一貫性がないと結論づけた。
AIは、ROP管理を改善するための大きな約束を持っています。
本稿では,rop検出,分類,診断,予後におけるaiの可能性について検討する。
関連論文リスト
- Artificial intelligence techniques in inherited retinal diseases: A review [19.107474958408847]
遺伝性網膜疾患(英: InheritedRetinal disease、IRD)は、進行性視力低下を引き起こす多様な遺伝性疾患群であり、労働年齢層の視覚障害の主要な原因である。
人工知能(AI)の最近の進歩は、これらの課題に対する有望な解決策を提供する。
このレビューは既存の研究を統合し、ギャップを特定し、IRDの診断と管理におけるAIの可能性の概要を提供する。
論文 参考訳(メタデータ) (2024-10-10T03:14:51Z) - Beyond the Eye: A Relational Model for Early Dementia Detection Using Retinal OCTA Images [42.75763279888966]
早期発症アルツハイマー病 (AD) と軽度認知障害 (MCI) をコントロールから識別するために, 網膜光コヒーレンストモグラフィー (OCTA) を用いた新しいPolarNet+を提案する。
提案手法は,まずカルト座標から極座標へのOCTA画像のマッピングを行う。
次に,包括的かつ臨床的に有用な情報抽出のための3次元画像のシリアライズと解析を行う多視点モジュールを提案する。
論文 参考訳(メタデータ) (2024-08-09T15:10:34Z) - Advanced AI Framework for Enhanced Detection and Assessment of Abdominal Trauma: Integrating 3D Segmentation with 2D CNN and RNN Models [5.817643726988823]
本研究は, 腹部外傷診断の高速化と精度向上を目的として, 人工知能(AI)と機械学習(ML)の応用について検討した。
我々は、診断性能を向上させるために、3Dセグメント化、2D畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)を組み合わせた高度なAIモデルを開発した。
本モデルでは腹部CTでリアルタイム, 正確な評価を行い, 臨床診断と患者成績の改善を図る。
論文 参考訳(メタデータ) (2024-07-23T04:18:34Z) - Augmented Risk Prediction for the Onset of Alzheimer's Disease from Electronic Health Records with Large Language Models [42.676566166835585]
アルツハイマー病(英語: Alzheimer's disease、AD)は、65歳以上のアメリカ人で5番目に多い死因である。
大規模言語モデル(LLM)の最近の進歩は、リスク予測の強化に強い可能性を秘めている。
本稿では,LSMの少数ショット推論能力を活用することでリスク予測を向上する新しいパイプラインを提案する。
論文 参考訳(メタデータ) (2024-05-26T03:05:10Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Detection and Classification of Diabetic Retinopathy using Deep Learning
Algorithms for Segmentation to Facilitate Referral Recommendation for Test
and Treatment Prediction [0.0]
本研究は糖尿病網膜症(DR)の臨床的課題について考察する。
提案手法は、畳み込みニューラルネットワーク(CNN)を用いたトランスファーラーニングを利用して、単一の基礎写真を用いた自動DR検出を行う。
Jaccard、F1、リコール、精度、精度の高評価スコアは、網膜病理評価における診断能力を高めるモデルの可能性を示している。
論文 参考訳(メタデータ) (2024-01-05T11:19:24Z) - Learning Through Guidance: Knowledge Distillation for Endoscopic Image
Classification [40.366659911178964]
内視鏡は消化管(GI)の根底にある異常を同定する上で重要な役割を担っている。
ディープラーニング、特にCNN(Convolution Neural Networks)は、従来の機能エンジニアリングを使わずに自動機能学習を実行するように設計されている。
KDに基づく3つの学習フレームワーク、応答ベース、特徴ベース、関係ベースメカニズムについて検討し、関係ベース学習を支援するために、新しい多面的注意型特徴融合機構を導入する。
論文 参考訳(メタデータ) (2023-08-17T02:02:11Z) - LAVA: Granular Neuron-Level Explainable AI for Alzheimer's Disease
Assessment from Fundus Images [15.02513291695459]
アルツハイマー病(英語: Alzheimer's Disease、AD)は、進行性神経変性疾患であり、認知症の主要な原因である。
網膜は、脳と解剖学的に結びついているため、AD検出の診断部位として仮説化されている。
我々は、グラニュラーニューロンレベル説明器(LAVA)と呼ばれる新しいモデルに依存しない説明可能なAIフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-06T18:43:10Z) - Transfer Learning for Retinal Vascular Disease Detection: A Pilot Study
with Diabetic Retinopathy and Retinopathy of Prematurity [10.447939250507654]
本稿では,網膜血管疾患の診断に特徴的類似性を活用することを目的としたトランスファーラーニング手法を提案する。
実験の結果,従来のImageNet-pretrained Transfer Learningアプローチでは,DR-pretrainedアプローチがすべての指標で支配的であったことが確認された。
論文 参考訳(メタデータ) (2022-01-04T17:14:42Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
本稿では,キュウリ葉の粉状ミドウを自動的に認識する深層学習手法を提案する。
マルチスペクトルイメージングデータに適用した教師なし深層学習技術に焦点をあてる。
本稿では, オートエンコーダアーキテクチャを用いて, 疾患検出のための2つの手法を提案する。
論文 参考訳(メタデータ) (2021-12-20T13:29:13Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。