論文の概要: GaussianObject: High-Quality 3D Object Reconstruction from Four Views with Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2402.10259v4
- Date: Wed, 13 Nov 2024 17:35:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:08:29.617573
- Title: GaussianObject: High-Quality 3D Object Reconstruction from Four Views with Gaussian Splatting
- Title(参考訳): Gaussian Object: ガウススメッティングによる4視点からの高品質3次元オブジェクト再構成
- Authors: Chen Yang, Sikuang Li, Jiemin Fang, Ruofan Liang, Lingxi Xie, Xiaopeng Zhang, Wei Shen, Qi Tian,
- Abstract要約: 高度にスパースな視点から3Dオブジェクトを再構成・レンダリングすることは、3Dビジョン技術の応用を促進する上で非常に重要である。
GaussianObjectは、Gaussian splattingで3Dオブジェクトを表現してレンダリングするフレームワークで、4つの入力イメージだけで高いレンダリング品質を実現する。
GaussianObjectは、MipNeRF360、OmniObject3D、OpenIllumination、および私たちが収集した未提示画像など、いくつかの挑戦的なデータセットで評価されている。
- 参考スコア(独自算出の注目度): 82.29476781526752
- License:
- Abstract: Reconstructing and rendering 3D objects from highly sparse views is of critical importance for promoting applications of 3D vision techniques and improving user experience. However, images from sparse views only contain very limited 3D information, leading to two significant challenges: 1) Difficulty in building multi-view consistency as images for matching are too few; 2) Partially omitted or highly compressed object information as view coverage is insufficient. To tackle these challenges, we propose GaussianObject, a framework to represent and render the 3D object with Gaussian splatting that achieves high rendering quality with only 4 input images. We first introduce techniques of visual hull and floater elimination, which explicitly inject structure priors into the initial optimization process to help build multi-view consistency, yielding a coarse 3D Gaussian representation. Then we construct a Gaussian repair model based on diffusion models to supplement the omitted object information, where Gaussians are further refined. We design a self-generating strategy to obtain image pairs for training the repair model. We further design a COLMAP-free variant, where pre-given accurate camera poses are not required, which achieves competitive quality and facilitates wider applications. GaussianObject is evaluated on several challenging datasets, including MipNeRF360, OmniObject3D, OpenIllumination, and our-collected unposed images, achieving superior performance from only four views and significantly outperforming previous SOTA methods. Our demo is available at https://gaussianobject.github.io/, and the code has been released at https://github.com/GaussianObject/GaussianObject.
- Abstract(参考訳): 高度にスパースな視点から3Dオブジェクトを再構成・レンダリングすることは、3Dビジョン技術の応用を促進し、ユーザエクスペリエンスを向上させる上で非常に重要である。
しかし、スパースビューの画像は、非常に限られた3D情報しか含まないため、2つの大きな課題に繋がる。
1) マッチングのための画像として多視点整合性を構築することの難しさは少なすぎる。
2)ビューカバレッジが不十分なため,部分的省略や高度に圧縮されたオブジェクト情報は不十分である。
これらの課題に対処するため,GaussianObjectを提案する。Gaussian splattingで3Dオブジェクトを表現・描画するフレームワークで,入力画像4枚だけで高いレンダリング品質を実現する。
まず,初期最適化プロセスに構造先行を明示的に注入し,多視点整合性の構築を支援し,粗い3次元ガウス表現をもたらす視覚的船体とフロータの除去技術を紹介する。
次に,拡散モデルに基づくガウス補修モデルを構築し,省略された対象情報を補う。
修復モデルを訓練するための画像ペアを得るための自己生成戦略を設計する。
我々はさらに、COLMAPのないバージョンを設計し、事前に用意された正確なカメラポーズは必要とせず、競争的な品質を実現し、より広範なアプリケーションを容易にする。
ガウシアンオブジェクトは、MipNeRF360、OmniObject3D、OpenIllumination、我々の収集した未提示画像など、いくつかの挑戦的なデータセットで評価され、わずか4つのビューで優れたパフォーマンスを実現し、従来のSOTA手法よりも大幅に優れていた。
私たちのデモはhttps://gaussianobject.github.io/で公開されており、コードはhttps://github.com/GaussianObject/GaussianObjectで公開されている。
関連論文リスト
- No Pose, No Problem: Surprisingly Simple 3D Gaussian Splats from Sparse Unposed Images [100.80376573969045]
NoPoSplatは、多視点画像から3Dガウスアンによってパラメータ化された3Dシーンを再構成できるフィードフォワードモデルである。
提案手法は,推定時にリアルタイムな3次元ガウス再構成を実現する。
この研究は、ポーズフリーの一般化可能な3次元再構成において大きな進歩をもたらし、実世界のシナリオに適用可能であることを示す。
論文 参考訳(メタデータ) (2024-10-31T17:58:22Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - HiSplat: Hierarchical 3D Gaussian Splatting for Generalizable Sparse-View Reconstruction [46.269350101349715]
HiSplatは、一般化可能な3Dガウススプラッティングのための新しいフレームワークである。
階層的な3Dガウスを粗大な戦略で生成する。
これにより、再構築品質とデータセット間の一般化が大幅に向上する。
論文 参考訳(メタデータ) (2024-10-08T17:59:32Z) - LM-Gaussian: Boost Sparse-view 3D Gaussian Splatting with Large Model Priors [34.91966359570867]
スパースビューの再構築は本質的に不適切であり、制約を受けていない。
本稿では,限られた画像から高品質な再構成を生成できるLM-Gaussianを紹介する。
提案手法は,従来の3DGS法と比較してデータ取得要求を大幅に削減する。
論文 参考訳(メタデータ) (2024-09-05T12:09:02Z) - Self-augmented Gaussian Splatting with Structure-aware Masks for Sparse-view 3D Reconstruction [9.953394373473621]
スパースビュー3D再構成は、コンピュータビジョンにおいて非常に難しい課題である。
本稿では,構造対応マスクにより拡張された自己拡張型粗大なガウススプラッティングパラダイムを提案する。
本手法は,知覚的品質と効率の両面において,スパース入力ビューの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-08-09T03:09:22Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
単一視点からの3次元オブジェクト再構成のためのガウススプティング表現に基づく拡散モデル手法を提案する。
モデルはGS楕円体の集合で表される3Dオブジェクトを生成することを学習する。
最終的な再構成されたオブジェクトは、高品質な3D構造とテクスチャを持ち、任意のビューで効率的にレンダリングできる。
論文 参考訳(メタデータ) (2024-07-05T03:43:08Z) - GeoLRM: Geometry-Aware Large Reconstruction Model for High-Quality 3D Gaussian Generation [65.33726478659304]
GeoLRM(Geometry-Aware Large Restruction Model)は、512kガウスと21の入力画像で11GBのGPUメモリで高品質な資産を予測できる手法である。
従来の作品では、3D構造の本質的な空間性は無視されており、3D画像と2D画像の間の明示的な幾何学的関係は利用されていない。
GeoLRMは、3Dポイントを直接処理し、変形可能なクロスアテンション機構を使用する新しい3D対応トランスフォーマー構造を導入することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2024-06-21T17:49:31Z) - Effective Rank Analysis and Regularization for Enhanced 3D Gaussian Splatting [33.01987451251659]
3D Gaussian Splatting(3DGS)は、高品質な3D再構成によるリアルタイムレンダリングが可能な有望な技術として登場した。
その可能性にもかかわらず、3DGSは針のようなアーティファクト、準最適ジオメトリー、不正確な正常など、課題に直面している。
正規化として有効なランクを導入し、ガウスの構造を制約する。
論文 参考訳(メタデータ) (2024-06-17T15:51:59Z) - MVGamba: Unify 3D Content Generation as State Space Sequence Modeling [150.80564081817786]
本稿では,多視点ガウス再構成器を備えた一般軽量ガウス再構成モデルMVGambaを紹介する。
オフザディテールのマルチビュー拡散モデルを統合することで、MVGambaは単一の画像、スパース画像、テキストプロンプトから3D生成タスクを統一する。
実験により、MVGambaは、すべての3Dコンテンツ生成シナリオで最先端のベースラインを約0.1タイムのモデルサイズで上回ります。
論文 参考訳(メタデータ) (2024-06-10T15:26:48Z) - Sparse-view CT Reconstruction with 3D Gaussian Volumetric Representation [13.667470059238607]
Sparse-view CTは従来のCTスキャンの放射線線量を減らすための有望な戦略である。
近年、3Dガウスアンは複雑な自然シーンのモデル化に応用されている。
スパース・ビューCT再建の可能性について検討した。
論文 参考訳(メタデータ) (2023-12-25T09:47:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。