論文の概要: Compact 3D Gaussian Representation for Radiance Field
- arxiv url: http://arxiv.org/abs/2311.13681v2
- Date: Thu, 15 Feb 2024 13:52:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-16 23:34:30.229067
- Title: Compact 3D Gaussian Representation for Radiance Field
- Title(参考訳): 放射場に対するコンパクトな3次元ガウス表現
- Authors: Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, Eunbyung Park
- Abstract要約: 本研究では,3次元ガウス点数を削減するための学習可能なマスク戦略を提案する。
また、格子型ニューラルネットワークを用いて、ビュー依存色をコンパクトかつ効果的に表現することを提案する。
我々の研究は、3Dシーン表現のための包括的なフレームワークを提供し、ハイパフォーマンス、高速トレーニング、コンパクト性、リアルタイムレンダリングを実現しています。
- 参考スコア(独自算出の注目度): 14.729871192785696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Radiance Fields (NeRFs) have demonstrated remarkable potential in
capturing complex 3D scenes with high fidelity. However, one persistent
challenge that hinders the widespread adoption of NeRFs is the computational
bottleneck due to the volumetric rendering. On the other hand, 3D Gaussian
splatting (3DGS) has recently emerged as an alternative representation that
leverages a 3D Gaussisan-based representation and adopts the rasterization
pipeline to render the images rather than volumetric rendering, achieving very
fast rendering speed and promising image quality. However, a significant
drawback arises as 3DGS entails a substantial number of 3D Gaussians to
maintain the high fidelity of the rendered images, which requires a large
amount of memory and storage. To address this critical issue, we place a
specific emphasis on two key objectives: reducing the number of Gaussian points
without sacrificing performance and compressing the Gaussian attributes, such
as view-dependent color and covariance. To this end, we propose a learnable
mask strategy that significantly reduces the number of Gaussians while
preserving high performance. In addition, we propose a compact but effective
representation of view-dependent color by employing a grid-based neural field
rather than relying on spherical harmonics. Finally, we learn codebooks to
compactly represent the geometric attributes of Gaussian by vector
quantization. With model compression techniques such as quantization and
entropy coding, we consistently show over 25$\times$ reduced storage and
enhanced rendering speed, while maintaining the quality of the scene
representation, compared to 3DGS. Our work provides a comprehensive framework
for 3D scene representation, achieving high performance, fast training,
compactness, and real-time rendering. Our project page is available at
https://maincold2.github.io/c3dgs/.
- Abstract(参考訳): ニューラル・ラジアンス・フィールド(NeRF)は、複雑な3Dシーンを高忠実度で撮影する大きな可能性を示している。
しかし、NeRFの普及を妨げている1つの永続的課題は、ボリュームレンダリングによる計算ボトルネックである。
一方、3d gaussian splatting (3dgs)は、3d gaussisanベースの表現を利用する代替表現として最近登場し、ボリュームレンダリングではなくラスタ化パイプラインを採用し、非常に高速なレンダリング速度と有望な画像品質を実現している。
しかし、3DGSは、大量のメモリとストレージを必要とするレンダリング画像の高忠実さを維持するために、相当数の3Dガウシアンを必要とするため、大きな欠点が生じる。
この重要な問題に対処するために、我々は、性能を犠牲にすることなくガウス点数を減らし、ビュー依存色や共分散のようなガウス属性を圧縮する、2つの主要な目的に特に重点を置いている。
そこで本研究では,高い性能を維持しながらガウス数を大幅に削減する学習可能なマスク戦略を提案する。
さらに,球面高調波に頼らず,格子型ニューラルネットワークを用いて,ビュー依存色をコンパクトかつ効果的に表現することを提案する。
最後に,ベクトル量子化によりガウスの幾何学的属性をコンパクトに表現するコードブックを学習する。
量子化やエントロピー符号化などのモデル圧縮技術では,3DGSに比べてシーン表現の質を保ちながら,ストレージの削減とレンダリング速度の向上を連続的に25$\times$で示す。
我々の研究は、3Dシーン表現のための包括的なフレームワークを提供し、ハイパフォーマンス、高速トレーニング、コンパクト性、リアルタイムレンダリングを実現しています。
プロジェクトページはhttps://maincold2.github.io/c3dgs/で閲覧できます。
関連論文リスト
- 3D Convex Splatting: Radiance Field Rendering with 3D Smooth Convexes [87.01284850604495]
多視点画像から幾何学的に有意な放射場をモデル化するためのプリミティブとして3次元滑らかな凸を利用した3次元凸法(3DCS)を提案する。
3DCSは、MipNeizer, Tanks and Temples, Deep Blendingなどのベンチマークで、3DGSよりも優れたパフォーマンスを実現している。
本結果は,高品質なシーン再構築のための新しい標準となる3Dコンベクシングの可能性を強調した。
論文 参考訳(メタデータ) (2024-11-22T14:31:39Z) - Compact 3D Gaussian Splatting for Static and Dynamic Radiance Fields [13.729716867839509]
ハイパフォーマンスを維持しつつガウスの数を著しく削減する学習可能なマスク戦略を提案する。
さらに、格子型ニューラルネットワークを用いて、ビュー依存色をコンパクトかつ効果的に表現することを提案する。
我々の研究は、3Dシーン表現のための包括的なフレームワークを提供し、ハイパフォーマンス、高速トレーニング、コンパクト性、リアルタイムレンダリングを実現しています。
論文 参考訳(メタデータ) (2024-08-07T14:56:34Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
本稿では,現在のアプローチよりも優れた空間感性プルーニングスコアを提案する。
また,事前学習した任意の3D-GSモデルに適用可能なマルチラウンドプルーファインパイプラインを提案する。
我々のパイプラインは、3D-GSの平均レンダリング速度を2.65$times$で増加させ、より健全なフォアグラウンド情報を保持します。
論文 参考訳(メタデータ) (2024-06-14T17:53:55Z) - A Refined 3D Gaussian Representation for High-Quality Dynamic Scene Reconstruction [2.022451212187598]
近年,Neural Radiance Fields (NeRF) は3次元の3次元再構成に革命をもたらした。
3D Gaussian Splatting (3D-GS)は、ニューラルネットワークの暗黙の表現から離れ、代わりに、シーンを直接ガウス型の分布を持つ点雲として表現している。
本稿では,高品質な動的シーン再構成のための高精細な3次元ガウス表現を提案する。
実験の結果,提案手法は3D-GSによるメモリ使用量を大幅に削減しつつ,レンダリング品質と高速化の既存手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-05-28T07:12:22Z) - F-3DGS: Factorized Coordinates and Representations for 3D Gaussian Splatting [13.653629893660218]
ニューラルレイディアンス場(NeRF)のレンダリング手法の代替として,F3DGS(Facterized 3D Gaussian Splatting)を提案する。
F-3DGSはレンダリング画像に匹敵する品質を維持しながら、ストレージコストを大幅に削減する。
論文 参考訳(メタデータ) (2024-05-27T11:55:49Z) - HAC: Hash-grid Assisted Context for 3D Gaussian Splatting Compression [55.6351304553003]
3D Gaussian Splatting (3DGS) は、新しいビュー合成のための有望なフレームワークとして登場した。
高速な3DGS表現のためのHash-grid Assisted Context (HAC) フレームワークを提案する。
私たちの研究は、コンテキストベースの3DGS表現の圧縮を探求するパイオニアです。
論文 参考訳(メタデータ) (2024-03-21T16:28:58Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES(Generalized Exponential Splatting)は、GEF(Generalized Exponential Function)を用いて3Dシーンをモデル化する斬新な表現である。
周波数変調損失の助けを借りて、GESは新規なビュー合成ベンチマークにおいて競合性能を達成する。
論文 参考訳(メタデータ) (2024-02-15T17:32:50Z) - Compact 3D Scene Representation via Self-Organizing Gaussian Grids [10.816451552362823]
3D Gaussian Splattingは、静的な3Dシーンをモデリングするための非常に有望なテクニックとして最近登場した。
本稿では3DGSのパラメータを局所的均一性を持つ2次元グリッドに整理したコンパクトなシーン表現を提案する。
本手法は,訓練時間の増加を伴わない複雑なシーンに対して,17倍から42倍の縮小係数を実現する。
論文 参考訳(メタデータ) (2023-12-19T20:18:29Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
最近の3次元ガウス散乱法は、最先端のレンダリング品質と速度を達成している。
局所的な3Dガウス分布にアンカーポイントを用いるScaffold-GSを導入する。
提案手法は,高品質なレンダリングを実現しつつ,冗長なガウスを効果的に削減できることを示す。
論文 参考訳(メタデータ) (2023-11-30T17:58:57Z) - LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS [55.85673901231235]
光ガウシアン(LightGaussian)は、3次元ガウシアンをよりコンパクトなフォーマットに変換する方法である。
ネットワーク・プルーニングにインスパイアされたLightGaussianは、ガウシアンをシーン再構築において最小限のグローバルな重要性で特定した。
LightGaussian は 3D-GS フレームワークで FPS を 144 から 237 に上げながら,平均 15 倍の圧縮率を達成する。
論文 参考訳(メタデータ) (2023-11-28T21:39:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。