Interpretable Imitation Learning via Generative Adversarial STL Inference and Control
- URL: http://arxiv.org/abs/2402.10310v2
- Date: Fri, 18 Jul 2025 14:44:19 GMT
- Title: Interpretable Imitation Learning via Generative Adversarial STL Inference and Control
- Authors: Wenliang Liu, Danyang Li, Erfan Aasi, Daniela Rus, Roberto Tron, Calin Belta,
- Abstract summary: We propose a novel imitation learning method that combines Signal Temporal Logic (STL) inference and control synthesis.<n>We employ a Generative Adversarial Network (GAN)-inspired approach to train both the inference and policy networks.
- Score: 47.67887707515356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Imitation learning methods have demonstrated considerable success in teaching autonomous systems complex tasks through expert demonstrations. However, a limitation of these methods is their lack of interpretability, particularly in understanding the specific task the learning agent aims to accomplish. In this paper, we propose a novel imitation learning method that combines Signal Temporal Logic (STL) inference and control synthesis, enabling the explicit representation of the task as an STL formula. This approach not only provides a clear understanding of the task but also supports the integration of human knowledge and allows for adaptation to out-of-distribution scenarios by manually adjusting the STL formulas and fine-tuning the policy. We employ a Generative Adversarial Network (GAN)-inspired approach to train both the inference and policy networks, effectively narrowing the gap between expert and learned policies. The efficiency of our algorithm is demonstrated through simulations, showcasing its practical applicability and adaptability.
Related papers
- Task-Oriented Low-Label Semantic Communication With Self-Supervised Learning [67.06363342414397]
Task-oriented semantic communication enhances transmission efficiency by conveying semantic information rather than exact messages.<n>Deep learning (DL)-based semantic communication can effectively cultivate the essential semantic knowledge for semantic extraction, transmission, and interpretation.<n>We propose a self-supervised learning-based semantic communication framework (SLSCom) to enhance task inference performance.
arXiv Detail & Related papers (2025-05-26T13:06:18Z) - Learning Task Representations from In-Context Learning [73.72066284711462]
Large language models (LLMs) have demonstrated remarkable proficiency in in-context learning.<n>We introduce an automated formulation for encoding task information in ICL prompts as a function of attention heads.<n>We show that our method's effectiveness stems from aligning the distribution of the last hidden state with that of an optimally performing in-context-learned model.
arXiv Detail & Related papers (2025-02-08T00:16:44Z) - Online inductive learning from answer sets for efficient reinforcement learning exploration [52.03682298194168]
We exploit inductive learning of answer set programs to learn a set of logical rules representing an explainable approximation of the agent policy.
We then perform answer set reasoning on the learned rules to guide the exploration of the learning agent at the next batch.
Our methodology produces a significant boost in the discounted return achieved by the agent, even in the first batches of training.
arXiv Detail & Related papers (2025-01-13T16:13:22Z) - Sample-Efficient Reinforcement Learning with Temporal Logic Objectives: Leveraging the Task Specification to Guide Exploration [13.053013407015628]
This paper addresses the problem of learning optimal control policies for systems with uncertain dynamics.
We propose an accelerated RL algorithm that can learn control policies significantly faster than competitive approaches.
arXiv Detail & Related papers (2024-10-16T00:53:41Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Neurosymbolic AI for Enhancing Instructability in Generative AI [7.4348066967005275]
Generative AI has transformed content creation across text, images, and music, showcasing capabilities in following instructions through prompting.
This article explores why neurosymbolic AI offers a better path to enhance the instructability of Large Language Models (LLMs)
We show that neurosymbolic approach enhances the reliability and context-awareness of task execution, enabling LLMs to dynamically interpret and respond to a wider range of instructional contexts with greater precision and flexibility.
arXiv Detail & Related papers (2024-07-26T13:15:50Z) - REVEAL-IT: REinforcement learning with Visibility of Evolving Agent poLicy for InTerpretability [23.81322529587759]
REVEAL-IT is a novel framework for explaining the learning process of an agent in complex environments.
We visualize the policy structure and the agent's learning process for various training tasks.
A GNN-based explainer learns to highlight the most important section of the policy, providing a more clear and robust explanation of the agent's learning process.
arXiv Detail & Related papers (2024-06-20T11:29:26Z) - Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
We propose a data curriculum method, namely Data-CUBE, that arranges the orders of all the multi-task data for training.
In the task level, we aim to find the optimal task order to minimize the total cross-task interference risk.
In the instance level, we measure the difficulty of all instances per task, then divide them into the easy-to-difficult mini-batches for training.
arXiv Detail & Related papers (2024-01-07T18:12:20Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Resilient Constrained Learning [94.27081585149836]
This paper presents a constrained learning approach that adapts the requirements while simultaneously solving the learning task.
We call this approach resilient constrained learning after the term used to describe ecological systems that adapt to disruptions by modifying their operation.
arXiv Detail & Related papers (2023-06-04T18:14:18Z) - Task Phasing: Automated Curriculum Learning from Demonstrations [46.1680279122598]
Applying reinforcement learning to sparse reward domains is notoriously challenging due to insufficient guiding signals.
This paper introduces a principled task phasing approach that uses demonstrations to automatically generate a curriculum sequence.
Experimental results on 3 sparse reward domains demonstrate that our task phasing approaches outperform state-of-the-art approaches with respect to performance.
arXiv Detail & Related papers (2022-10-20T03:59:11Z) - Delayed Reinforcement Learning by Imitation [31.932677462399468]
We present a novel algorithm that learns how to act in a delayed environment from undelayed demonstrations.
We show that DIDA obtains high performances with a remarkable sample efficiency on a variety of tasks.
arXiv Detail & Related papers (2022-05-11T15:27:33Z) - Domain-Robust Visual Imitation Learning with Mutual Information
Constraints [0.0]
We introduce a new algorithm called Disentangling Generative Adversarial Imitation Learning (DisentanGAIL)
Our algorithm enables autonomous agents to learn directly from high dimensional observations of an expert performing a task.
arXiv Detail & Related papers (2021-03-08T21:18:58Z) - Off-Policy Imitation Learning from Observations [78.30794935265425]
Learning from Observations (LfO) is a practical reinforcement learning scenario from which many applications can benefit.
We propose a sample-efficient LfO approach that enables off-policy optimization in a principled manner.
Our approach is comparable with state-of-the-art locomotion in terms of both sample-efficiency and performance.
arXiv Detail & Related papers (2021-02-25T21:33:47Z) - Hierarchical Variational Imitation Learning of Control Programs [131.7671843857375]
We propose a variational inference method for imitation learning of a control policy represented by parametrized hierarchical procedures (PHP)
Our method discovers the hierarchical structure in a dataset of observation-action traces of teacher demonstrations, by learning an approximate posterior distribution over the latent sequence of procedure calls and terminations.
We demonstrate a novel benefit of variational inference in the context of hierarchical imitation learning: in decomposing the policy into simpler procedures, inference can leverage acausal information that is unused by other methods.
arXiv Detail & Related papers (2019-12-29T08:57:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.