論文の概要: On the Safety Concerns of Deploying LLMs/VLMs in Robotics: Highlighting
the Risks and Vulnerabilities
- arxiv url: http://arxiv.org/abs/2402.10340v3
- Date: Sat, 24 Feb 2024 20:34:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-27 23:48:45.763747
- Title: On the Safety Concerns of Deploying LLMs/VLMs in Robotics: Highlighting
the Risks and Vulnerabilities
- Title(参考訳): ロボットにおけるLLM/VLMの配置の安全性に関する考察 : リスクと脆弱性の強調
- Authors: Xiyang Wu, Ruiqi Xian, Tianrui Guan, Jing Liang, Souradip Chakraborty,
Fuxiao Liu, Brian Sadler, Dinesh Manocha, Amrit Singh Bedi
- Abstract要約: ロボットの動作を操作または誤操作することは容易であり、安全上の危険をもたらす。
我々のデータは、即時攻撃で21.2%、知覚攻撃で30.2%の平均的なパフォーマンス劣化を示す。
- 参考スコア(独自算出の注目度): 50.31806287390321
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this paper, we highlight the critical issues of robustness and safety
associated with integrating large language models (LLMs) and vision-language
models (VLMs) into robotics applications. Recent works have focused on using
LLMs and VLMs to improve the performance of robotics tasks, such as
manipulation, navigation, etc. However, such integration can introduce
significant vulnerabilities, in terms of their susceptibility to adversarial
attacks due to the language models, potentially leading to catastrophic
consequences. By examining recent works at the interface of LLMs/VLMs and
robotics, we show that it is easy to manipulate or misguide the robot's
actions, leading to safety hazards. We define and provide examples of several
plausible adversarial attacks, and conduct experiments on three prominent robot
frameworks integrated with a language model, including KnowNo VIMA, and
Instruct2Act, to assess their susceptibility to these attacks. Our empirical
findings reveal a striking vulnerability of LLM/VLM-robot integrated systems:
simple adversarial attacks can significantly undermine the effectiveness of
LLM/VLM-robot integrated systems. Specifically, our data demonstrate an average
performance deterioration of 21.2% under prompt attacks and a more alarming
30.2% under perception attacks. These results underscore the critical need for
robust countermeasures to ensure the safe and reliable deployment of the
advanced LLM/VLM-based robotic systems.
- Abstract(参考訳): 本稿では,大規模言語モデル (LLMs) と視覚言語モデル (VLMs) をロボティクスアプリケーションに統合する際のロバスト性と安全性に関する重要な課題について述べる。
最近の研究は、操作やナビゲーションなどのロボティクスタスクの性能向上にLLMとVLMを使うことに重点を置いている。
しかし、そのような統合は言語モデルによる敵対的攻撃への感受性において重大な脆弱性をもたらし、破滅的な結果をもたらす可能性がある。
LLM/VLMとロボティクスのインターフェースにおける最近の研究から,ロボットの動作を操作あるいは誤操作しやすく,安全性を損なうことが示唆された。
我々は,いくつかの可逆的攻撃の例を定義し,これらの攻撃に対する感受性を評価するために,KnowNo VIMAやInstruct2Actを含む言語モデルと統合された3つの著名なロボットフレームワークの実験を行った。
実験により,LLM/VLM-ロボット統合システムの重大な脆弱性が明らかとなった。
特に,本研究では,プロンプト攻撃時の平均性能低下は21.2%,知覚攻撃では30.2%であった。
これらの結果は、先進的なLLM/VLMベースのロボットシステムの安全で信頼性の高い展開を保証するための堅牢な対策の必要性を強調している。
関連論文リスト
- Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [70.93622520400385]
本稿では,VLAに基づくロボットシステムのロバスト性を体系的に評価する。
本研究では,ロボット行動の不安定化に空間的基盤を活用する,標的のない位置認識型攻撃目標を提案する。
また、カメラの視野内に小さなカラフルなパッチを配置し、デジタル環境と物理環境の両方で効果的に攻撃を実行する逆パッチ生成アプローチを設計する。
論文 参考訳(メタデータ) (2024-11-18T01:52:20Z) - Defining and Evaluating Physical Safety for Large Language Models [62.4971588282174]
大型言語モデル (LLM) は、ドローンのようなロボットシステムを制御するためにますます使われている。
現実世界のアプリケーションに物理的な脅威や害をもたらすリスクは、まだ解明されていない。
我々は,ドローンの物理的安全性リスクを,(1)目標脅威,(2)目標脅威,(3)インフラ攻撃,(4)規制違反の4つのカテゴリに分類する。
論文 参考訳(メタデータ) (2024-11-04T17:41:25Z) - A Study on Prompt Injection Attack Against LLM-Integrated Mobile Robotic Systems [4.71242457111104]
大規模言語モデル(LLM)はマルチモーダルプロンプトを処理でき、よりコンテキスト対応の応答を生成することができる。
主な懸念事項の1つは、ロボットナビゲーションタスクでLLMを使用する際の潜在的なセキュリティリスクである。
本研究は,LPM統合システムにおける即時注入が移動ロボットの性能に及ぼす影響について検討する。
論文 参考訳(メタデータ) (2024-08-07T02:48:22Z) - LLM-Driven Robots Risk Enacting Discrimination, Violence, and Unlawful Actions [3.1247504290622214]
研究は、大規模言語モデルが現実世界のロボット実験や応用において差別的な結果や安全でない行動をもたらす可能性を懸念している。
高い評価を受けたLLMの識別基準と安全性基準のHRIに基づく評価を行う。
結果から, 組織的, 定期的, 包括的リスクアセスメントと, 成果改善のための保証の必要性が浮き彫りとなった。
論文 参考訳(メタデータ) (2024-06-13T05:31:49Z) - SLM as Guardian: Pioneering AI Safety with Small Language Models [6.799423428734095]
より大型のモデルにセーフガード機能を組み込むことで、トレーニングコストの上昇と意図しない有用性の低下が問題となった。
本稿では、有害なクエリ検出とセーフガード応答生成の両方に、より小さなLSMを利用する。
提案手法の有効性を実証し,LLMと比較して,有害なクエリ検出およびセーフガード応答性能を同等又は超過する手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T08:03:15Z) - Can We Trust Embodied Agents? Exploring Backdoor Attacks against Embodied LLM-based Decision-Making Systems [27.316115171846953]
大規模言語モデル(LLM)は、実世界のAI意思決定タスクにおいて大きな可能性を示している。
LLMは、固有の常識と推論能力を活用するために微調整され、特定の用途に適合する。
この微調整プロセスは、特に安全クリティカルなサイバー物理システムにおいて、かなりの安全性とセキュリティの脆弱性をもたらす。
論文 参考訳(メタデータ) (2024-05-27T17:59:43Z) - Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science [65.77763092833348]
大規模言語モデル(LLM)を利用したインテリジェントエージェントは、自律的な実験を行い、様々な分野にわたる科学的発見を促進する上で、大きな可能性を証明している。
彼らの能力は有望だが、これらのエージェントは安全性を慎重に考慮する必要がある新たな脆弱性も導入している。
本稿では,科学領域におけるLSMをベースとしたエージェントの脆弱性の徹底的な調査を行い,その誤用に伴う潜在的なリスクに光を当て,安全性対策の必要性を強調した。
論文 参考訳(メタデータ) (2024-02-06T18:54:07Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
本稿では,現代大規模言語モデル (LLM) の誤用の可能性について検討する。
本研究は, LLMが効果的な誤情報発生器として機能し, DOQAシステムの性能が著しく低下することを明らかにする。
論文 参考訳(メタデータ) (2023-05-23T04:10:26Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。