Requirements for probing chiral Casimir-Polder forces in a molecular Talbot-Lau interferometer
- URL: http://arxiv.org/abs/2402.10391v2
- Date: Wed, 10 Apr 2024 18:30:06 GMT
- Title: Requirements for probing chiral Casimir-Polder forces in a molecular Talbot-Lau interferometer
- Authors: Fumika Suzuki, S. A. Shah, Diego A. R. Dalvit, Markus Arndt,
- Abstract summary: We study scenarios where the second grating is either directly written into a chiral material or where the nanomask is coated with chiral substances.
We show requirements for probing enantiospecific effects in matter-wave interferometry in the transmission signal.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We theoretically investigate the influence of chiral Casimir-Polder (CP) forces in Talbot-Lau interferometry, based on three nanomechanical gratings. We study scenarios where the second grating is either directly written into a chiral material or where the nanomask is coated with chiral substances. We show requirements for probing enantiospecific effects in matter-wave interferometry in the transmission signal and the interference fringe visibility, which depend on the de Broglie wavelength and the molecular chirality. The proposed setup is particularly sensitive to CP forces in the non-retarded regime where chiral effects can be comparable in magnitude to their electric and magnetic counterparts. While the first and third gratings do not change the phase of the matter wave, applying a coating of chiral substances to them enhances the instrument's chiral selectivity.
Related papers
- Matter-wave interferometers with trapped strongly interacting Feshbach molecules [3.2284194626041596]
We implement two types of matter-wave interferometers using trapped Bose-condensed Feshbach molecules.
In each case, we focus on investigating interaction effects and their implications for the performance.
arXiv Detail & Related papers (2024-02-07T18:46:41Z) - Relaxation of experimental parameters in a Quantum-Gravity Induced
Entanglement of Masses Protocol using electromagnetic screening [0.0]
The quantum gravity-induced entanglement of masses (QGEM) experiment is used to test the quantum nature of gravity in a lab.
We will consider a parallel configuration of the QGEM experiment, where we will estimate the EM-induced dephasing rate, run-by-run systematic errors which will induce dephasing, and also provide constraints on the size of the superposition.
arXiv Detail & Related papers (2023-07-14T12:08:57Z) - Decoherence of a matter-wave interferometer due to dipole-dipole
interactions [0.0]
We will study the decoherence of the matter-wave interferometer due to dipole-dipole interactions.
We will conclude by applying the obtained formulae to estimate the dipole-dipole decoherence rate for the Quantum Gravity-induced Entanglement of Masses protocol.
arXiv Detail & Related papers (2023-07-13T18:02:48Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Nonequilibrium Casimir effects of nonreciprocal surface waves [52.12351460454646]
We show that an isotropic dipolar particle in the vicinity of a substrate made of nonreciprocal plasmonic materials can experience a lateral Casimir force and torque.
We connect the existence of the lateral force to the asymmetric dispersion of nonreciprocal surface polaritons and the existence of the lateral torque to the spin-momentum locking of such surface waves.
arXiv Detail & Related papers (2021-06-19T23:10:04Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Enantiomer superpositions from matter-wave interference of chiral
molecules [0.0]
We show how chiral molecules can be prepared in a quantum superposition of two enantiomers by far-field matter-wave diffraction.
We propose a setup for sensing enantiomer-dependent forces, parity-violating weak interactions, and environment-induced superselection of handedness.
arXiv Detail & Related papers (2021-02-11T17:05:52Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Casimir force between Weyl semimetals in a chiral medium [68.8204255655161]
We study the Casimir effect in a system composed of two Weyl semimetals separated by a gap filled with a chiral medium.
We find that if the medium between the two WSMs is a Faraday material, a repulsive Casimir force can be obtained.
arXiv Detail & Related papers (2020-01-28T14:08:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.