Continuous-variable quantum key distribution over 28.6 km fiber with an
integrated silicon photonic receiver chip
- URL: http://arxiv.org/abs/2402.10411v1
- Date: Fri, 16 Feb 2024 02:31:42 GMT
- Title: Continuous-variable quantum key distribution over 28.6 km fiber with an
integrated silicon photonic receiver chip
- Authors: Yiming Bian, Yan Pan, Xuesong Xu, Liang Zhao, Yang Li, Wei Huang, Lei
Zhang, Song Yu, Yichen Zhang and Bingjie Xu
- Abstract summary: Continuous-variable quantum key distribution is an attractive approach for photonic integration.
Here, we report the implementation of a real local oscillator quantum key distribution system with an integrated silicon photonic receiver chip.
Thanks to the well-designed chip-based homodyne detectors with a bandwidth up to 1.5 GHz and a clearance up to 7.42 dB, the transmission distance of the system has been extended to 28.6 km, achieving a secret key generation rate of Mbps level.
- Score: 16.15983610491357
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum key distribution, which ensures information-theoretically secret key
generation, is currently advancing through photonic integration to achieve high
performance, cost reduction and compact size, thereby facilitating the
large-scale deployment. Continuous-variable quantum key distribution is an
attractive approach for photonic integrations due to its compatibility with
off-the-shelf optical communication devices. However, its chip-based systems
have encountered significant limitations primarily related to the
shot-noise-limited receiver design, which demands low noise, wide bandwidth,
high clearance and well stability. Here, we report the implementation of a real
local oscillator continuous-variable quantum key distribution system with an
integrated silicon photonic receiver chip. Thanks to the well-designed
chip-based homodyne detectors with a bandwidth up to 1.5 GHz and a clearance up
to 7.42 dB, the transmission distance of the system has been extended to 28.6
km, achieving a secret key generation rate of Mbps level. This technological
advancement enables the quantum key distribution systems with photonic
integrated receivers to achieve the coverage in both access network scenarios
and short-distance metropolitan interconnections, paving the way for the
development of the next-generation quantum key distribution networks on a large
scale.
Related papers
- A practical transmitter device for passive state BB84 quantum key distribution [0.0]
Preparation of quantum states within the transmitter device is a significant driver of both complexity and cost.
A fully passive state preparation approach elegantly resolves these problems by combining state preparation and QRNG stages into a single optical instrument.
We demonstrate our simplified transmitter by establishing a QKD link over a 10 km fiber, generating a secret key rate 110 bits/s.
arXiv Detail & Related papers (2024-05-14T10:08:46Z) - High-Rate 16-node quantum access network based on passive optical
network [14.923361967583348]
In most built quantum secure networks, point-to-multipoint (PTMP) topology is one of the most popular schemes.
Here, we report an experimental demonstration of a high-rate 16-nodes quantum access network based on passive optical network.
arXiv Detail & Related papers (2024-03-05T01:44:13Z) - Experimental demonstration of Continuous-Variable Quantum Key
Distribution with a silicon photonics integrated receiver [0.0]
Quantum Key Distribution (QKD) is a prominent application in the field of quantum cryptography.
We present a CV-QKD receiver based on a silicon PIC capable of performing balanced detection.
arXiv Detail & Related papers (2023-11-07T13:27:47Z) - Quantum Key Distribution With an Integrated Photonic Receiver [41.94295877935867]
Photonic integrated circuits (PICs) are key in advancing quantum technologies for secure communications.
We implement a three-state BB84 protocol with decoy-state method to enhance quantum communications.
One of the most notable results is the extraction of a secret key over a record-breaking 45 dB channel attenuation.
arXiv Detail & Related papers (2023-10-25T15:19:19Z) - A Hybrid Integrated Quantum Key Distribution Transceiver Chip [0.0]
hybrid integration of ultra-low-loss silicon nitride waveguides with indium phosphide electro-optic modulators to produce high-performance quantum key distribution transceiver chips.
We demonstrate bidirectional secure bit rates of 1.82 Mbps over 10 dB channel attenuation and positive secure key rates out to 250 km of fibre.
arXiv Detail & Related papers (2023-08-04T10:28:47Z) - Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron
Nitride [48.97025221755422]
We demonstrate a room temperature, discrete-variable quantum key distribution system using a bright single photon source in hexagonal-boron nitride.
We have generated keys with one million bits length, and demonstrated a secret key of approximately 70,000 bits, at a quantum bit error rate of 6%.
Our work demonstrates the first proof of concept finite-key BB84 QKD system realised with hBN defects.
arXiv Detail & Related papers (2023-02-13T09:38:51Z) - Storage and analysis of light-matter entanglement in a fibre-integrated
system [48.7576911714538]
We demonstrate a fiber-integrated quantum memory entangled with a photon at telecommunication wavelength.
The storage device is based on a fiber-pigtailed laser written waveguide in a rare-earth doped solid and allows an all-fiber stable adressing of the memory.
Our results feature orders of magnitude advances in terms of storage time and efficiency for integrated storage of light-matter entanglement, and constitute a significant step forward towards quantum networks using integrated devices.
arXiv Detail & Related papers (2022-01-10T14:28:04Z) - Towards fully-fledged quantum and classical communication over deployed
fiber with up-conversion module [47.187609203210705]
We propose and demonstrate a new method, based on up-conversion assisted receiver, for co-propagating classical light and QKD signals.
Our proposal exhibits higher tolerance for noise in comparison to the standard receiver, thus enabling the distribution of secret keys in the condition of 4 dB-higher classical power.
arXiv Detail & Related papers (2021-06-09T13:52:27Z) - Realizing quantum nodes in space for cost-effective, global quantum
communication: in-orbit results and next steps [94.08853042978113]
SpooQy-1 is a satellite developed at the Centre for Quantum Technologies.
It has successfully demonstrated the operation of an entangled photon pair source on a resource-constrained CubeSat platform.
arXiv Detail & Related papers (2021-04-22T02:59:23Z) - Path-encoded high-dimensional quantum communication over a 2 km
multicore fiber [50.591267188664666]
We demonstrate the reliable transmission over a 2 km long multicore fiber of path-encoded high-dimensional quantum states.
A stable interferometric detection is guaranteed, allowing for low error rates and the generation of 6.3 Mbit/s of secret key rate.
arXiv Detail & Related papers (2021-03-10T11:02:45Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.