High-Rate 16-node quantum access network based on passive optical
network
- URL: http://arxiv.org/abs/2403.02585v1
- Date: Tue, 5 Mar 2024 01:44:13 GMT
- Title: High-Rate 16-node quantum access network based on passive optical
network
- Authors: Yan Pan, Yiming Bian, Yang Li, Xuesong Xu, Li Ma, Heng Wang, Yujie
Luo, Jiayi Dou, Yaodi Pi, Jie Yang, Wei Huang, Song Yu, Stefano Pirandola,
Yichen Zhang, and Bingjie Xu
- Abstract summary: In most built quantum secure networks, point-to-multipoint (PTMP) topology is one of the most popular schemes.
Here, we report an experimental demonstration of a high-rate 16-nodes quantum access network based on passive optical network.
- Score: 14.923361967583348
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum key distribution can provide information-theoretical secure
communication, which is now heading towards building the quantum secure network
for real-world applications. In most built quantum secure networks,
point-to-multipoint (PTMP) topology is one of the most popular schemes,
especially for quantum access networks. However, due to the lack of custom
protocols with high secret key rate and compatible with classical optical
networks for PTMP scheme, there is still no efficient way for a
high-performance quantum access network with a multitude of users. Here, we
report an experimental demonstration of a high-rate 16-nodes quantum access
network based on passive optical network, where a high-efficient coherent-state
PTMP protocol is novelly designed to allow independent secret key generation
between one transmitter and multiple receivers concurrently. Such
accomplishment is attributed to a well-designed real-time shot-noise
calibration method, a series of advanced digital signal processing algorithms
and a flexible post-processing strategy with high success probability. Finally,
the experimental results show that the average secret key rate is around 2.086
Mbps between the transmitter and each user, which is two orders of magnitude
higher than previous demonstrations. With the advantages of low cost, excellent
compatibility, and wide bandwidth, our work paves the way for building
practical PTMP quantum access networks, thus constituting an important step
towards scalable quantum secure networks.
Related papers
- Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Experimental composable key distribution using discrete-modulated continuous variable quantum cryptography [1.9464379888286716]
We present the first experimental demonstration of a four-state DM CVQKD system, successfully generating composable finite-size keys.
This accomplishment is enabled by using an advanced security proof.
Results mark a significant step toward the large-scale deployment of practical, high-performance, cost-effective, and highly secure quantum key distribution networks.
arXiv Detail & Related papers (2024-10-17T16:05:08Z) - Guarantees on the structure of experimental quantum networks [109.08741987555818]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Continuous-variable quantum passive optical network [0.0]
We propose continuous-variable quantum passive-optical-network (CV-QPON) protocols, enabling deterministic and simultaneous secret key generation among all network users.
We show two protocols with different trust levels assigned to the network users and experimentally demonstrate key generation in a quantum access network with 8 users.
arXiv Detail & Related papers (2024-02-25T09:56:56Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - A round-trip multi-band quantum access network [5.894846988315471]
We propose an expandable and cost-effective quantum access network, in which the round-trip structure makes quantum states travel in a circle to carry the information.
We realize multi-user secure key sharing through the continuous-variable QKD (CV-QKD) protocol.
The results show that each user can achieve excess noise suppression and 600 bps level secure key generation under 30 km standard fiber transmission.
arXiv Detail & Related papers (2023-05-10T06:14:13Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - High-rate continuous-variable measurement device-independent quantum key distribution with finite-size security [0.0]
Continuous-variable (CV) measurement-device-independent (MDI) QKD is a promising candidate for creating various quantum network topologies.
Here, we report the first experimental validation of a CV MDI-QKD system, achieving a secure key rate of 2.6 Mbit/s against collective attacks.
arXiv Detail & Related papers (2023-03-02T22:20:29Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - Scalable authentication and optimal flooding in a quantum network [2.604279577944016]
We consider two related protocols, their experimental demonstrations on an 8-user quantum network test-bed.
First, an authentication transfer protocol to manage a fundamental limitation of quantum communication.
Second, when end users quantify their trust in intermediary nodes, our flooding protocol can be used to improve both end-to-end communication speeds and increase security against malicious nodes.
arXiv Detail & Related papers (2021-01-28T19:00:07Z) - Experimental quantum conference key agreement [55.41644538483948]
Quantum networks will provide multi-node entanglement over long distances to enable secure communication on a global scale.
Here we demonstrate quantum conference key agreement, a quantum communication protocol that exploits multi-partite entanglement.
We distribute four-photon Greenberger-Horne-Zeilinger (GHZ) states generated by high-brightness, telecom photon-pair sources across up to 50 km of fibre.
arXiv Detail & Related papers (2020-02-04T19:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.