Nowcasting with Mixed Frequency Data Using Gaussian Processes
- URL: http://arxiv.org/abs/2402.10574v2
- Date: Mon, 9 Sep 2024 18:15:19 GMT
- Title: Nowcasting with Mixed Frequency Data Using Gaussian Processes
- Authors: Niko Hauzenberger, Massimiliano Marcellino, Michael Pfarrhofer, Anna Stelzer,
- Abstract summary: We develop machine learning methods for mixed data sampling (MIDAS) regressions.
We use Gaussian processes (GPs) and compress the input space with structured and unstructured MIDAS variants.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop Bayesian machine learning methods for mixed data sampling (MIDAS) regressions. This involves handling frequency mismatches and specifying functional relationships between many predictors and the dependent variable. We use Gaussian processes (GPs) and compress the input space with structured and unstructured MIDAS variants. This yields several versions of GP-MIDAS with distinct properties and implications, which we evaluate in short-horizon now- and forecasting exercises with both simulated data and data on quarterly US output growth and inflation in the GDP deflator. It turns out that our proposed framework leverages macroeconomic Big Data in a computationally efficient way and offers gains in predictive accuracy compared to other machine learning approaches along several dimensions.
Related papers
- Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
In science and engineering, we often work with models designed for accurate prediction of variables of interest.
Recognizing that these models are approximations of reality, it becomes desirable to apply multiple models to the same data and integrate their outcomes.
arXiv Detail & Related papers (2024-03-03T04:21:21Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
We present a novel extension of multi-task Gaussian Cox processes for modeling heterogeneous correlated tasks jointly.
A MOGP prior over the parameters of the dedicated likelihoods for classification, regression and point process tasks can facilitate sharing of information between heterogeneous tasks.
We derive a mean-field approximation to realize closed-form iterative updates for estimating model parameters.
arXiv Detail & Related papers (2023-08-29T15:01:01Z) - Variational Factorization Machines for Preference Elicitation in
Large-Scale Recommender Systems [17.050774091903552]
We propose a variational formulation of factorization machines (FMs) that can be easily optimized using standard mini-batch descent gradient.
Our algorithm learns an approximate posterior distribution over the user and item parameters, which leads to confidence intervals over the predictions.
We show, using several datasets, that it has comparable or better performance than existing methods in terms of prediction accuracy.
arXiv Detail & Related papers (2022-12-20T00:06:28Z) - Ensemble Conformalized Quantile Regression for Probabilistic Time Series
Forecasting [4.716034416800441]
This paper presents a novel probabilistic forecasting method called ensemble conformalized quantile regression (EnCQR)
EnCQR constructs distribution-free and approximately marginally valid prediction intervals (PIs), is suitable for nonstationary and heteroscedastic time series data, and can be applied on top of any forecasting model.
The results demonstrate that EnCQR outperforms models based only on quantile regression or conformal prediction, and it provides sharper, more informative, and valid PIs.
arXiv Detail & Related papers (2022-02-17T16:54:20Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
We propose an invertible ODE-based mapping that operates on each component of the random variable vectors and shares the parameters across all of them.
NGGPs outperform the competing state-of-the-art approaches on a diversified set of benchmarks and applications.
arXiv Detail & Related papers (2021-10-26T10:45:25Z) - Cluster-Specific Predictions with Multi-Task Gaussian Processes [4.368185344922342]
A model involving Gaussian processes (GPs) is introduced to handle multi-task learning, clustering, and prediction.
The model is instantiated as a mixture of multi-task GPs with common mean processes.
The overall algorithm, called MagmaClust, is publicly available as an R package.
arXiv Detail & Related papers (2020-11-16T11:08:59Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
Local Gaussian processes are a novel, computationally efficient modeling approach based on Gaussian process regression.
Due to an iterative, data-driven division of the input space, they achieve a sublinear computational complexity in the total number of training points in practice.
A numerical evaluation on real-world data sets shows their advantages over other state-of-the-art methods in terms of accuracy as well as prediction and update speed.
arXiv Detail & Related papers (2020-06-16T18:43:31Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.