論文の概要: How Reliable Are Automatic Evaluation Methods for Instruction-Tuned LLMs?
- arxiv url: http://arxiv.org/abs/2402.10770v4
- Date: Wed, 02 Oct 2024 09:18:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-03 15:18:29.285350
- Title: How Reliable Are Automatic Evaluation Methods for Instruction-Tuned LLMs?
- Title(参考訳): インストラクション調整LDMの自動評価法はどの程度信頼性が高いか?
- Authors: Ehsan Doostmohammadi, Oskar Holmström, Marco Kuhlmann,
- Abstract要約: このような手法のメタ評価を行い、その信頼性を幅広いタスクにわたって評価する。
自動評価手法は、特定の条件下で人間の評価を近似することができるが、その妥当性は文脈に依存している。
本研究は,命令調整型LLMの開発と評価において,自動手法の適用方法や解釈方法の理解を深めるものである。
- 参考スコア(独自算出の注目度): 3.1706553206969925
- License:
- Abstract: Work on instruction-tuned Large Language Models (LLMs) has used automatic methods based on text overlap and LLM judgments as cost-effective alternatives to human evaluation. In this paper, we perform a meta-evaluation of such methods and assess their reliability across a broad range of tasks. In evaluating how well automatic methods align with human evaluations, correlation metrics are the most commonly employed method despite their inherent limitations when dealing with ties and different scales. To address these shortcomings, we use Pairwise Accuracy as an alternative to standard correlation measures. We observe that while automatic evaluation methods can approximate human ratings under specific conditions, their validity is highly context-dependent. Specifically, the simple ROUGE-L metric correlates very well with human ratings for short-answer English tasks but is unreliable in free-form generation tasks and cross-lingual scenarios. The effectiveness of the more advanced method of using GPT-4 as a judge diminishes significantly if reference answers are not included in the prompt, which is the scenario where this method has the potential to provide the most value compared to other metrics. Our findings enhance the understanding of how automatic methods should be applied and interpreted when developing and evaluating instruction-tuned LLMs.
- Abstract(参考訳): 命令調整型大規模言語モデル (LLMs) の研究は, テキストオーバーラップに基づく自動手法とLCM判断を, 費用対効果の代替手段として用いている。
本稿では,このような手法のメタ評価を行い,その信頼性を幅広いタスクにわたって評価する。
自動手法が人間の評価とどのように一致しているかを評価する際、相関指標は、関係や異なるスケールを扱う際に固有の制限があるにもかかわらず、最も一般的に用いられる手法である。
これらの欠点に対処するため,標準相関尺度の代替としてPairwise Accuracyを用いる。
自動評価手法は、特定の条件下で人間の評価を近似することができるが、その妥当性は文脈に依存している。
具体的には、ROUGE-Lメートル法は、短時間の英語タスクに対する人間の評価と非常によく相関するが、自由形式の生成タスクや言語間シナリオでは信頼できない。
GPT-4を審査員として使用するより高度な手法の有効性は、基準回答がプロンプトに含まれていない場合、大幅に低下する。
本研究は,命令調整型LLMの開発と評価において,自動手法の適用方法や解釈方法の理解を深めるものである。
関連論文リスト
- Reference-Guided Verdict: LLMs-as-Judges in Automatic Evaluation of Free-Form Text [12.879551933541345]
大きな言語モデル(LLM)は、人間のような会話を生成できる。
BLEUやROUGEのような従来のメトリクスは、このような生成出力の微妙な意味と文脈的な豊かさを捉えるには不十分である。
本稿では,複数のLSM-as-judgesを活用することで,評価プロセスを自動化する基準誘導型判定手法を提案する。
論文 参考訳(メタデータ) (2024-08-17T16:01:45Z) - Decoding Biases: Automated Methods and LLM Judges for Gender Bias Detection in Language Models [47.545382591646565]
大きな言語モデル(LLM)は、言語理解と人間レベルのテキストの生成に優れています。
LLMは、悪意のあるユーザーがモデルに望ましくないテキストを生成するよう促す敵攻撃の影響を受けやすい。
本研究では,対象のLSMから偏りのある応答を抽出する逆方向のプロンプトを自動生成するモデルを訓練する。
論文 参考訳(メタデータ) (2024-08-07T17:11:34Z) - SemScore: Automated Evaluation of Instruction-Tuned LLMs based on
Semantic Textual Similarity [3.3162484539136416]
本稿では,SemScoreと呼ばれる簡易な評価尺度を提案する。
意味的テキスト類似度(STS)を用いたモデル出力とゴールドターゲット応答の比較
提案したSemScore測定基準は,人間の評価と相関する点において,より複雑な評価指標よりも優れていることが判明した。
論文 参考訳(メタデータ) (2024-01-30T14:52:50Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
オープンエンド生成タスクをトークンレベルの予測タスクに再構成する。
我々はLSMに答えを自己評価するように指示する。
自己評価に基づくスコアリング手法をベンチマークする。
論文 参考訳(メタデータ) (2023-12-14T19:09:22Z) - Towards Better Evaluation of Instruction-Following: A Case-Study in
Summarization [9.686937153317809]
本研究では,多種多様なメトリクスのメタ評価を行い,大規模言語モデルの指示追従能力の精度を定量的に評価する。
riSumを用いて評価方法と人的判断の一致を分析した。
論文 参考訳(メタデータ) (2023-10-12T15:07:11Z) - Bring Your Own Data! Self-Supervised Evaluation for Large Language
Models [52.15056231665816]
大規模言語モデル(LLM)の自己教師型評価のためのフレームワークを提案する。
閉書知識,毒性,長期文脈依存性を測定するための自己指導型評価戦略を実証する。
自己監督評価と人監督評価との間には強い相関関係が認められた。
論文 参考訳(メタデータ) (2023-06-23T17:59:09Z) - Large Language Models are Not Yet Human-Level Evaluators for Abstractive
Summarization [66.08074487429477]
抽象的な要約のための自動評価器として,大規模言語モデル(LLM)の安定性と信頼性について検討する。
また、ChatGPTとGPT-4は、一般的に使われている自動測定値よりも優れていますが、人間の代替品として準備ができていません。
論文 参考訳(メタデータ) (2023-05-22T14:58:13Z) - TRUE: Re-evaluating Factual Consistency Evaluation [29.888885917330327]
TRUE: 多様なタスクから既存のテキストの標準化されたコレクション上での、事実整合性メトリクスの総合的な研究である。
我々の標準化により、前述した相関よりも動作可能で解釈可能なサンプルレベルのメタ評価プロトコルが実現される。
さまざまな最先端のメトリクスと11のデータセットから、大規模NLIと質問生成と回答に基づくアプローチが、強力で相補的な結果をもたらすことが分かりました。
論文 参考訳(メタデータ) (2022-04-11T10:14:35Z) - A Statistical Analysis of Summarization Evaluation Metrics using
Resampling Methods [60.04142561088524]
信頼区間は比較的広く,信頼性の高い自動測定値の信頼性に高い不確実性を示す。
多くのメトリクスはROUGEよりも統計的改善を示していないが、QAEvalとBERTScoreという2つの最近の研究は、いくつかの評価設定で行われている。
論文 参考訳(メタデータ) (2021-03-31T18:28:14Z) - PONE: A Novel Automatic Evaluation Metric for Open-Domain Generative
Dialogue Systems [48.99561874529323]
オープンドメイン生成対話システムの評価には3つの方法がある。
体系的な比較が欠如しているため、どの指標がより効果的であるかは明らかでない。
本稿では,人間の判断との相関性を大幅に改善できる,新しい,実現可能な学習基準を提案する。
論文 参考訳(メタデータ) (2020-04-06T04:36:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。