Neural machine translation of clinical procedure codes for medical diagnosis and uncertainty quantification
- URL: http://arxiv.org/abs/2402.10940v2
- Date: Sat, 19 Oct 2024 06:35:25 GMT
- Title: Neural machine translation of clinical procedure codes for medical diagnosis and uncertainty quantification
- Authors: Pei-Hung Chung, Shuhan He, Norawit Kijpaisalratana, Abdel-badih el Ariss, Byung-Jun Yoon,
- Abstract summary: We introduce the concept of Medical Entropy, quantifying uncertainties in patient outcomes predicted by neural machine translation based on the ICD-9 code of procedures.
Our experimental results show strong correlations between procedure and diagnosis sequences based on the simple ICD-9 code.
We also demonstrate the promising capacity to model trends of uncertainties during hospitalizations through a data-driven approach.
- Score: 1.974814309194804
- License:
- Abstract: A Clinical Decision Support System (CDSS) is designed to enhance clinician decision-making by combining system-generated recommendations with medical expertise. Given the high costs, intensive labor, and time-sensitive nature of medical treatments, there is a pressing need for efficient decision support, especially in complex emergency scenarios. In these scenarios, where information can be limited, an advanced CDSS framework that leverages AI (artificial intelligence) models to effectively reduce diagnostic uncertainty has utility. Such an AI-enabled CDSS framework with quantified uncertainty promises to be practical and beneficial in the demanding context of real-world medical care. In this study, we introduce the concept of Medical Entropy, quantifying uncertainties in patient outcomes predicted by neural machine translation based on the ICD-9 code of procedures. Our experimental results not only show strong correlations between procedure and diagnosis sequences based on the simple ICD-9 code but also demonstrate the promising capacity to model trends of uncertainties during hospitalizations through a data-driven approach.
Related papers
- Development of a Large Language Model-based Multi-Agent Clinical Decision Support System for Korean Triage and Acuity Scale (KTAS)-Based Triage and Treatment Planning in Emergency Departments [0.0]
This study presents an LLM-driven CDSS to assist ED physicians and nurses in patient triage, treatment planning, and overall emergency care management.
The system comprises four AI agents emulating key ED roles: Triage Nurse, Emergency Physician, Pharmacist, and ED Coordinator.
It incorporates the Korean Triage and Acuity Scale (KTAS) for triage assessment and integrates with the RxNorm API for medication management.
arXiv Detail & Related papers (2024-08-14T13:03:41Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
This paper presents meticulously curated AIready datasets covering multi-modal data (e.g., drug molecule, disease code, text, categorical/numerical features) and 8 crucial prediction challenges in clinical trial design.
We provide basic validation methods for each task to ensure the datasets' usability and reliability.
We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design.
arXiv Detail & Related papers (2024-06-30T09:13:10Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - Uncertainty Quantification in Machine Learning Based Segmentation: A
Post-Hoc Approach for Left Ventricle Volume Estimation in MRI [0.0]
Left ventricular (LV) volume estimation is critical for valid diagnosis and management of various cardiovascular conditions.
Recent machine learning advancements, particularly U-Net-like convolutional networks, have facilitated automated segmentation for medical images.
This study proposes a novel methodology for post-hoc uncertainty estimation in LV volume prediction.
arXiv Detail & Related papers (2023-10-30T13:44:55Z) - Rethinking Human-AI Collaboration in Complex Medical Decision Making: A
Case Study in Sepsis Diagnosis [34.19436164837297]
We build SepsisLab based on a state-of-the-art AI algorithm and extend it to predict the future projection of sepsis development.
We demonstrate that SepsisLab enables a promising human-AI collaboration paradigm for the future of AI-assisted sepsis diagnosis.
arXiv Detail & Related papers (2023-09-17T19:19:39Z) - Applying Artificial Intelligence to Clinical Decision Support in Mental
Health: What Have We Learned? [0.0]
We present a case study of a recently developed AI-CDSS, Aifred Health, aimed at supporting the selection and management of treatment in major depressive disorder.
We consider both the principles espoused during development and testing of this AI-CDSS, as well as the practical solutions developed to facilitate implementation.
arXiv Detail & Related papers (2023-03-06T21:40:51Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - Clinical Evidence Engine: Proof-of-Concept For A
Clinical-Domain-Agnostic Decision Support Infrastructure [26.565616653685115]
We present a proof-of-concept system to demonstrate the technical and design feasibility of this approach across three domains.
Leveraging Clinical BioBERT, the system can effectively identify clinical trial reports based on lengthy clinical questions.
We discuss the idea of designing DST explanations not as specific to a DST or an algorithm, but as a domain-agnostic decision support infrastructure.
arXiv Detail & Related papers (2021-10-31T23:21:25Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
We present a new benchmarking suite designed specifically for medical sequential decision making.
The Medkit-Learn(ing) Environment is a publicly available Python package providing simple and easy access to high-fidelity synthetic medical data.
arXiv Detail & Related papers (2021-06-08T10:38:09Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.