Rethinking Human-AI Collaboration in Complex Medical Decision Making: A
Case Study in Sepsis Diagnosis
- URL: http://arxiv.org/abs/2309.12368v2
- Date: Mon, 26 Feb 2024 14:57:06 GMT
- Title: Rethinking Human-AI Collaboration in Complex Medical Decision Making: A
Case Study in Sepsis Diagnosis
- Authors: Shao Zhang, Jianing Yu, Xuhai Xu, Changchang Yin, Yuxuan Lu, Bingsheng
Yao, Melanie Tory, Lace M. Padilla, Jeffrey Caterino, Ping Zhang, Dakuo Wang
- Abstract summary: We build SepsisLab based on a state-of-the-art AI algorithm and extend it to predict the future projection of sepsis development.
We demonstrate that SepsisLab enables a promising human-AI collaboration paradigm for the future of AI-assisted sepsis diagnosis.
- Score: 34.19436164837297
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Today's AI systems for medical decision support often succeed on benchmark
datasets in research papers but fail in real-world deployment. This work
focuses on the decision making of sepsis, an acute life-threatening systematic
infection that requires an early diagnosis with high uncertainty from the
clinician. Our aim is to explore the design requirements for AI systems that
can support clinical experts in making better decisions for the early diagnosis
of sepsis. The study begins with a formative study investigating why clinical
experts abandon an existing AI-powered Sepsis predictive module in their
electrical health record (EHR) system. We argue that a human-centered AI system
needs to support human experts in the intermediate stages of a medical
decision-making process (e.g., generating hypotheses or gathering data),
instead of focusing only on the final decision. Therefore, we build SepsisLab
based on a state-of-the-art AI algorithm and extend it to predict the future
projection of sepsis development, visualize the prediction uncertainty, and
propose actionable suggestions (i.e., which additional laboratory tests can be
collected) to reduce such uncertainty. Through heuristic evaluation with six
clinicians using our prototype system, we demonstrate that SepsisLab enables a
promising human-AI collaboration paradigm for the future of AI-assisted sepsis
diagnosis and other high-stakes medical decision making.
Related papers
- SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
This paper presents meticulously curated AIready datasets covering multi-modal data (e.g., drug molecule, disease code, text, categorical/numerical features) and 8 crucial prediction challenges in clinical trial design.
We provide basic validation methods for each task to ensure the datasets' usability and reliability.
We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design.
arXiv Detail & Related papers (2024-06-30T09:13:10Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Neural machine translation of clinical procedure codes for medical diagnosis and uncertainty quantification [1.974814309194804]
We introduce the concept of Medical Entropy, quantifying uncertainties in patient outcomes predicted by neural machine translation based on the ICD-9 code of procedures.
Our experimental results show strong correlations between procedure and diagnosis sequences based on the simple ICD-9 code.
We also demonstrate the promising capacity to model trends of uncertainties during hospitalizations through a data-driven approach.
arXiv Detail & Related papers (2024-02-07T20:11:56Z) - A Foundational Framework and Methodology for Personalized Early and
Timely Diagnosis [84.6348989654916]
We propose the first foundational framework for early and timely diagnosis.
It builds on decision-theoretic approaches to outline the diagnosis process.
It integrates machine learning and statistical methodology for estimating the optimal personalized diagnostic path.
arXiv Detail & Related papers (2023-11-26T14:42:31Z) - Applying Artificial Intelligence to Clinical Decision Support in Mental
Health: What Have We Learned? [0.0]
We present a case study of a recently developed AI-CDSS, Aifred Health, aimed at supporting the selection and management of treatment in major depressive disorder.
We consider both the principles espoused during development and testing of this AI-CDSS, as well as the practical solutions developed to facilitate implementation.
arXiv Detail & Related papers (2023-03-06T21:40:51Z) - Who Goes First? Influences of Human-AI Workflow on Decision Making in
Clinical Imaging [24.911186503082465]
This study explores the effects of providing AI assistance at the start of a diagnostic session in radiology versus after the radiologist has made a provisional decision.
We found that participants who are asked to register provisional responses in advance of reviewing AI inferences are less likely to agree with the AI regardless of whether the advice is accurate and, in instances of disagreement with the AI, are less likely to seek the second opinion of a colleague.
arXiv Detail & Related papers (2022-05-19T16:59:25Z) - Quantifying machine learning-induced overdiagnosis in sepsis [0.0]
We present an innovative approach that allows us to preemptively detect potential cases of overdiagnosis.
This is one of the first attempts to quantify machine-learning induced overdiagnosis.
arXiv Detail & Related papers (2021-07-03T11:55:55Z) - Detecting Spurious Correlations with Sanity Tests for Artificial
Intelligence Guided Radiology Systems [22.249702822013045]
A critical component to deploying AI in radiology is to gain confidence in a developed system's efficacy and safety.
The current gold standard approach is to conduct an analytical validation of performance on a generalization dataset.
We describe a series of sanity tests to identify when a system performs well on development data for the wrong reasons.
arXiv Detail & Related papers (2021-03-04T14:14:05Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.