MITS: A Quantum Sorcerer Stone For Designing Surface Codes
- URL: http://arxiv.org/abs/2402.11027v2
- Date: Mon, 4 Mar 2024 01:13:30 GMT
- Title: MITS: A Quantum Sorcerer Stone For Designing Surface Codes
- Authors: Avimita Chatterjee, Debarshi Kundu and Swaroop Ghosh
- Abstract summary: We present MITS, a tool designed to reverse-engineer the well-known simulator STIM for designing QEC codes.
MITS accepts the specific noise model of a quantum computer and a target logical error rate as input and outputs the optimal surface code rounds and code distances.
- Score: 2.348041867134616
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the evolving landscape of quantum computing, determining the most
efficient parameters for Quantum Error Correction (QEC) is paramount. Various
quantum computers possess varied types and amounts of physical noise.
Traditionally, simulators operate in a forward paradigm, taking parameters such
as distance, rounds, and physical error to output a logical error rate.
However, usage of maximum distance and rounds of the surface code might waste
resources. An approach that relies on trial and error to fine-tune QEC code
parameters using simulation tools like STIM can be exceedingly time-consuming.
Additionally, daily fluctuations in quantum error rates can alter the ideal QEC
settings needed. As a result, there is a crucial need for an automated solution
that can rapidly determine the appropriate QEC parameters tailored to the
current conditions. To bridge this gap, we present MITS, a tool designed to
reverse-engineer the well-known simulator STIM for designing QEC codes. MITS
accepts the specific noise model of a quantum computer and a target logical
error rate as input and outputs the optimal surface code rounds and code
distances. This guarantees minimal qubit and gate usage, harmonizing the
desired logical error rate with the existing hardware limitations on qubit
numbers and gate fidelity. We explored and compared multiple heuristics and
machine learning models for training/designing MITS and concluded that XGBoost
and Random Forest regression were most effective, with Pearson correlation
coefficients of 0.98 and 0.96 respectively.
Related papers
- Fault-Tolerant Belief Propagation for Practical Quantum Memory [6.322831694506286]
A fault-tolerant approach to reliable quantum memory is essential for scalable quantum computing.
We propose a decoder that utilizes a space-time Tanner graph across multiple rounds of syndrome extraction with mixed-alphabet error variables.
Our simulations demonstrate high error thresholds of 0.4%-0.87% and strong error-floor performance for topological code families.
arXiv Detail & Related papers (2024-09-27T12:21:45Z) - Subspace-Based Local Compilation of Variational Quantum Circuits for Large-Scale Quantum Many-Body Simulation [0.0]
This paper proposes a hybrid quantum-classical algorithm for compiling the time-evolution operator.
It achieves a 95% reduction in circuit depth compared to Trotterization while maintaining accuracy.
We estimate the gate count needed to execute the quantum simulations using the LSVQC on near-term quantum computing architectures.
arXiv Detail & Related papers (2024-07-19T09:50:01Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Simulation and performance analysis of quantum error correction with a
rotated surface code under a realistic noise model [0.6946929968559495]
Demonstration of quantum error correction (QEC) is one of the most important milestones in the realization of fully-fledged quantum computers.
In this work, we performed a full simulation of QEC for the rotated surface codes with a code distance 5, which employs 49 qubits.
We evaluate the logical error probability in a realistic noise model that incorporates not only Pauli errors but also coherent errors due to a systematic control error or unintended interactions.
arXiv Detail & Related papers (2022-04-25T02:45:06Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - The Cost of Improving the Precision of the Variational Quantum
Eigensolver for Quantum Chemistry [0.0]
We study how various types of errors affect the variational quantum eigensolver (VQE)
We find that the optimal way of running the hybrid classical-quantum optimization is to allow some noise in intermediate energy evaluations.
arXiv Detail & Related papers (2021-11-09T06:24:52Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Improving readout in quantum simulations with repetition codes [0.0]
We use repetition codes as scalable schemes with the potential to provide more accurate solutions to problems of interest in quantum chemistry and physics.
We showcase our approach in multiple IBM Quantum devices and validate our results using a simplified theoretical noise model.
arXiv Detail & Related papers (2021-05-27T18:01:05Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.