論文の概要: Federated Fine-tuning of Large Language Models under Heterogeneous Tasks and Client Resources
- arxiv url: http://arxiv.org/abs/2402.11505v2
- Date: Thu, 30 May 2024 15:46:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 21:05:54.218698
- Title: Federated Fine-tuning of Large Language Models under Heterogeneous Tasks and Client Resources
- Title(参考訳): 不均一タスクとクライアントリソースによる大規模言語モデルのフェデレーション微調整
- Authors: Jiamu Bai, Daoyuan Chen, Bingchen Qian, Liuyi Yao, Yaliang Li,
- Abstract要約: 大規模言語モデル(LLM)のパラメータ効率の高い微調整には、最近FL(Federated Learning)が適用されている。
本研究では,LLMファインチューニングのための簡易かつ効果的なアグリゲーションスキームFlexLoRAを紹介する。
- 参考スコア(独自算出の注目度): 31.041608465716575
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) has recently been applied to the parameter-efficient fine-tuning of Large Language Models (LLMs). While promising, it raises significant challenges due to the heterogeneous resources and data distributions of clients. This study introduces FlexLoRA, a simple yet effective aggregation scheme for LLM fine-tuning, which mitigates the ``bucket effect'' in traditional FL that restricts the potential of clients with ample resources by tying them to the capabilities of the least-resourced participants. FlexLoRA allows for dynamic adjustment of local LoRA ranks, fostering the development of a global model imbued with broader, less task-specific knowledge. By synthesizing a full-size LoRA weight from individual client contributions and employing Singular Value Decomposition (SVD) for weight redistribution, FlexLoRA fully leverages heterogeneous client resources. Involving thousands of clients performing heterogeneous NLP tasks and client resources, our experiments validate the efficacy of FlexLoRA, with the federated global model achieving consistently better improvement over SOTA FL methods in downstream NLP task performance across various heterogeneous distributions. FlexLoRA's practicality is further underscored by our theoretical analysis and its seamless integration with existing LoRA-based FL methods, offering a path toward cross-device, privacy-preserving federated tuning for LLMs.
- Abstract(参考訳): Federated Learning (FL) は、最近、LLM(Large Language Models)のパラメータ効率の高い微調整に応用されている。
有望ではあるが、クライアントの不均一なリソースとデータ分散のために、大きな課題を提起する。
本研究では,LLMファインチューニングのための簡易かつ効果的なアグリゲーションスキームであるFlexLoRAを紹介した。これは従来のFLの'bucket effect'を緩和し,最小リソースの参加者の能力に結びつけることで,クライアントの可能性を制限する。
FlexLoRAはローカルなLoRAランクの動的調整を可能にし、より広範でタスク固有の知識の少ないグローバルモデルの開発を促進する。
個々のクライアントからのコントリビューションからフルサイズのLoRA重みを合成し、重量再分配にSingular Value Decomposition(SVD)を採用することで、FlexLoRAは異種クライアントリソースを完全に活用する。
不均一なNLPタスクとクライアントリソースを実行する何千ものクライアントを巻き込み、この実験はFlexLoRAの有効性を検証し、フェデレートされたグローバルモデルにより、様々な異種分布にわたる下流NLPタスク性能において、SOTA FLメソッドよりも一貫して改善された。
FlexLoRAの実用性は、我々の理論的分析と既存のLoRAベースのFLメソッドとのシームレスな統合によってさらに強調され、LCMのクロスデバイス、プライバシ保護フェデレーション付きチューニングへの道を提供する。
関連論文リスト
- LoRA-FAIR: Federated LoRA Fine-Tuning with Aggregation and Initialization Refinement [5.162783756846019]
ファンデーションモデル(FM)は、タスク固有の微調整によって、多様なタスクにまたがる強力なパフォーマンスを実現する。
低ランク適応 (LoRA) のようなローランク適応 (LoRA) 手法は、少ないパラメータをチューニングするための低ランク行列を導入することで、このコストを削減する。
LoRA-FAIRは計算と通信の効率を維持し、最先端の手法よりも優れた性能が得られる。
論文 参考訳(メタデータ) (2024-11-22T14:19:01Z) - Fed-piLot: Optimizing LoRA Assignment for Efficient Federated Foundation Model Fine-Tuning [11.10244162253018]
ヘテロジニアスクライアントのためのローカルLoRA割り当てを最適化したFedFMファインチューニングフレームワークであるFed-piLotを紹介する。
我々は、クライアントのメモリ制約下でのLoRA割り当てを最適化するために、IGスコア(Local-Global Information Gain Score)ベースの値関数を設計する。
IIDおよび非IID条件下での3つのデータセットの実験結果は、Fed-piLotの有効性と効率を示す。
論文 参考訳(メタデータ) (2024-10-14T06:36:41Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - pFedLoRA: Model-Heterogeneous Personalized Federated Learning with LoRA
Tuning [35.59830784463706]
フェデレートラーニング(FL)は、中央サーバーが複数の参加者(クライアント)を協調的に調整し、分散データをトレーニングする、新たな機械学習パラダイムである。
我々は,LoRAチューニング(pFedLoRA)に基づく,新規で効率的なモデル・ヘテロジニアス・パーソナライズド・ラーニング・フレームワークを提案する。
2つのベンチマークデータセットの実験では、pFedLoRAは6つの最先端ベースラインを上回っている。
論文 参考訳(メタデータ) (2023-10-20T05:24:28Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
パーソナライズドラーニング(PFL)のための新しいGAN(Generative Adversarial Network)の共有と集約戦略を提案する。
PFL-GANは、異なるシナリオにおけるクライアントの不均一性に対処する。より具体的には、まずクライアント間の類似性を学び、次に重み付けされた協調データアグリゲーションを開発する。
いくつかのよく知られたデータセットに対する厳密な実験による実験結果は、PFL-GANの有効性を示している。
論文 参考訳(メタデータ) (2023-08-23T22:38:35Z) - Federated Learning for Semantic Parsing: Task Formulation, Evaluation
Setup, New Algorithms [29.636944156801327]
複数のクライアントは、セマンティック解析データを共有せずに、1つのグローバルモデルを協調的にトレーニングする。
Lorarは、各ラウンド中のトレーニング損失の削減に基づいて、グローバルモデル更新に対する各クライアントのコントリビューションを調整する。
より小さなデータセットを持つクライアントは、より大きなパフォーマンス向上を享受する。
論文 参考訳(メタデータ) (2023-05-26T19:25:49Z) - Efficient Personalized Federated Learning via Sparse Model-Adaptation [47.088124462925684]
Federated Learning (FL)は、複数のクライアントに対して、独自のプライベートデータを共有せずに機械学習モデルをトレーニングすることを目的としている。
疎局所モデルを適応的かつ効率的に学習し,効率的なパーソナライズFLのためのpFedGateを提案する。
我々は,pFedGateが最先端手法よりも優れたグローバル精度,個人精度,効率性を同時に達成できることを示す。
論文 参考訳(メタデータ) (2023-05-04T12:21:34Z) - Beyond ADMM: A Unified Client-variance-reduced Adaptive Federated
Learning Framework [82.36466358313025]
我々はFedVRAと呼ばれる原始二重FLアルゴリズムを提案し、このアルゴリズムはグローバルモデルの分散還元レベルとバイアスを適応的に制御することができる。
半教師付き画像分類タスクに基づく実験は,既存の手法よりもFedVRAの方が優れていることを示す。
論文 参考訳(メタデータ) (2022-12-03T03:27:51Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
フェデレートラーニング(Federated Learning, FL)は、プライバシ制約下での分散学習パラダイムである。
サーバ内のグローバルモデル(FedFTG)を微調整するデータフリー知識蒸留法を提案する。
私たちのFedFTGは最先端(SOTA)のFLアルゴリズムよりも優れており、FedAvg、FedProx、FedDyn、SCAFFOLDの強化のための強力なプラグインとして機能します。
論文 参考訳(メタデータ) (2022-03-17T11:18:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。