Metacognitive Retrieval-Augmented Large Language Models
- URL: http://arxiv.org/abs/2402.11626v1
- Date: Sun, 18 Feb 2024 15:41:31 GMT
- Title: Metacognitive Retrieval-Augmented Large Language Models
- Authors: Yujia Zhou, Zheng Liu, Jiajie Jin, Jian-Yun Nie, Zhicheng Dou
- Abstract summary: This paper introduces MetaRAG, an approach that combines the retrieval-augmented generation process with metacognition.
By integrating this, MetaRAG enables the model to monitor, evaluate, and plan its response strategies.
Empirical evaluations show that MetaRAG significantly outperforms existing methods.
- Score: 43.57020180706832
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-augmented generation have become central in natural language
processing due to their efficacy in generating factual content. While
traditional methods employ single-time retrieval, more recent approaches have
shifted towards multi-time retrieval for multi-hop reasoning tasks. However,
these strategies are bound by predefined reasoning steps, potentially leading
to inaccuracies in response generation. This paper introduces MetaRAG, an
approach that combines the retrieval-augmented generation process with
metacognition. Drawing from cognitive psychology, metacognition allows an
entity to self-reflect and critically evaluate its cognitive processes. By
integrating this, MetaRAG enables the model to monitor, evaluate, and plan its
response strategies, enhancing its introspective reasoning abilities. Through a
three-step metacognitive regulation pipeline, the model can identify
inadequacies in initial cognitive responses and fixes them. Empirical
evaluations show that MetaRAG significantly outperforms existing methods.
Related papers
- Does "Reasoning" with Large Language Models Improve Recognizing, Generating, and Reframing Unhelpful Thoughts? [22.202600416432386]
Cognitive Reframing helps individuals reinterpret negative experiences by finding positive meaning.
Recent advances in Large Language Models (LLMs) have demonstrated improved performance through reasoning-based strategies.
This inspires a promising direction of leveraging the reasoning capabilities of LLMs to improve CBT and mental reframing.
arXiv Detail & Related papers (2025-03-31T19:19:34Z) - Dancing with Critiques: Enhancing LLM Reasoning with Stepwise Natural Language Self-Critique [66.94905631175209]
We propose a novel inference-time scaling approach -- stepwise natural language self-critique (PANEL)
It employs self-generated natural language critiques as feedback to guide the step-level search process.
This approach bypasses the need for task-specific verifiers and the associated training overhead.
arXiv Detail & Related papers (2025-03-21T17:59:55Z) - Bridging Social Psychology and LLM Reasoning: Conflict-Aware Meta-Review Generation via Cognitive Alignment [35.82355113500509]
Large language models (LLMs) show promise in automating manuscript critiques.
Existing methods fail to handle conflicting viewpoints within differing opinions.
We propose the Cognitive Alignment Framework (CAF), a dual-process architecture that transforms LLMs into adaptive scientific arbitrators.
arXiv Detail & Related papers (2025-03-18T04:13:11Z) - How Metacognitive Architectures Remember Their Own Thoughts: A Systematic Review [16.35521789216079]
We review how Computational Metacognitive Architectures (CMAs) model, store, remember and process their metacognitive experiences.
We consider different aspects - ranging from the underlying psychological theories to the content and structure of collected data, to the algorithms used and evaluation results.
arXiv Detail & Related papers (2025-02-28T08:48:41Z) - DeepRAG: Thinking to Retrieval Step by Step for Large Language Models [92.87532210660456]
We propose DeepRAG, a framework that models retrieval-augmented reasoning as a Markov Decision Process (MDP)
By iteratively decomposing queries, DeepRAG dynamically determines whether to retrieve external knowledge or rely on parametric reasoning at each step.
Experiments show that DeepRAG improves retrieval efficiency while improving answer accuracy by 21.99%, demonstrating its effectiveness in optimizing retrieval-augmented reasoning.
arXiv Detail & Related papers (2025-02-03T08:22:45Z) - On the Reasoning Capacity of AI Models and How to Quantify It [0.0]
Large Language Models (LLMs) have intensified the debate surrounding the fundamental nature of their reasoning capabilities.
While achieving high performance on benchmarks such as GPQA and MMLU, these models exhibit limitations in more complex reasoning tasks.
We propose a novel phenomenological approach that goes beyond traditional accuracy metrics to probe the underlying mechanisms of model behavior.
arXiv Detail & Related papers (2025-01-23T16:58:18Z) - Unlocking Structured Thinking in Language Models with Cognitive Prompting [0.0]
We propose cognitive prompting as a novel approach to guide problem-solving in large language models.
We evaluate the effectiveness of cognitive prompting on Meta's LLaMA models.
arXiv Detail & Related papers (2024-10-03T19:53:47Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.
We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.
Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - What if...?: Thinking Counterfactual Keywords Helps to Mitigate Hallucination in Large Multi-modal Models [50.97705264224828]
We propose Counterfactual Inception, a novel method that implants counterfactual thinking into Large Multi-modal Models.
We aim for the models to engage with and generate responses that span a wider contextual scene understanding.
Comprehensive analyses across various LMMs, including both open-source and proprietary models, corroborate that counterfactual thinking significantly reduces hallucination.
arXiv Detail & Related papers (2024-03-20T11:27:20Z) - CogGPT: Unleashing the Power of Cognitive Dynamics on Large Language Models [24.079412787914993]
We propose the concept of the cognitive dynamics of large language models (LLMs) and present a corresponding task with the inspiration of longitudinal studies.
Towards the task, we develop CogBench, a novel benchmark to assess the cognitive dynamics of LLMs and validate it through participant surveys.
We introduce CogGPT for the task, which features an innovative iterative cognitive mechanism aimed at enhancing lifelong cognitive dynamics.
arXiv Detail & Related papers (2024-01-06T03:59:59Z) - From Heuristic to Analytic: Cognitively Motivated Strategies for
Coherent Physical Commonsense Reasoning [66.98861219674039]
Heuristic-Analytic Reasoning (HAR) strategies drastically improve the coherence of rationalizations for model decisions.
Our findings suggest that human-like reasoning strategies can effectively improve the coherence and reliability of PLM reasoning.
arXiv Detail & Related papers (2023-10-24T19:46:04Z) - Large Language Models for Information Retrieval: A Survey [58.30439850203101]
Information retrieval has evolved from term-based methods to its integration with advanced neural models.
Recent research has sought to leverage large language models (LLMs) to improve IR systems.
We delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers.
arXiv Detail & Related papers (2023-08-14T12:47:22Z) - Improving Factuality and Reasoning in Language Models through Multiagent
Debate [95.10641301155232]
We present a complementary approach to improve language responses where multiple language model instances propose and debate their individual responses and reasoning processes over multiple rounds to arrive at a common final answer.
Our findings indicate that this approach significantly enhances mathematical and strategic reasoning across a number of tasks.
Our approach may be directly applied to existing black-box models and uses identical procedure and prompts for all tasks we investigate.
arXiv Detail & Related papers (2023-05-23T17:55:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.