Statistical Test on Diffusion Model-based Anomaly Detection by Selective Inference
- URL: http://arxiv.org/abs/2402.11789v3
- Date: Thu, 03 Oct 2024 22:59:49 GMT
- Title: Statistical Test on Diffusion Model-based Anomaly Detection by Selective Inference
- Authors: Teruyuki Katsuoka, Tomohiro Shiraishi, Daiki Miwa, Vo Nguyen Le Duy, Ichiro Takeuchi,
- Abstract summary: We address the task of detecting anomalous regions in medical images using diffusion models.
We propose a statistical method to quantify the reliability of the detected anomalies.
- Score: 19.927066428010782
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advancements in AI image generation, particularly diffusion models, have progressed rapidly. However, the absence of an established framework for quantifying the reliability of AI-generated images hinders their use in critical decision-making tasks, such as medical image diagnosis. In this study, we address the task of detecting anomalous regions in medical images using diffusion models and propose a statistical method to quantify the reliability of the detected anomalies. The core concept of our method involves a selective inference framework, wherein statistical tests are conducted under the condition that the images are produced by a diffusion model. With our approach, the statistical significance of anomaly detection results can be quantified in the form of a $p$-value, enabling decision-making with controlled error rates, as is standard in medical practice. We demonstrate the theoretical soundness and practical effectiveness of our statistical test through numerical experiments on both synthetic and brain image datasets.
Related papers
- Correcting Deviations from Normality: A Reformulated Diffusion Model for Multi-Class Unsupervised Anomaly Detection [15.572896213775438]
This paper introduces a reformulation of the standard diffusion model geared toward selective region alteration.<n>By modeling anomalies as noise in the latent space, our proposed textbfDeviation correction diffusion (Ours) model preserves the normal regions and encourages transformations on anomalous areas.<n> Comprehensive evaluations demonstrate the superiority of our method in accurately identifying and localizing anomalies in complex images.
arXiv Detail & Related papers (2025-03-25T05:14:40Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.
We evaluate our method on three public longitudinal benchmark datasets of brain MRI and chest X-rays for counterfactual image generation.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Detecting Discrepancies Between AI-Generated and Natural Images Using Uncertainty [91.64626435585643]
We propose a novel approach for detecting AI-generated images by leveraging predictive uncertainty to mitigate misuse and associated risks.
The motivation arises from the fundamental assumption regarding the distributional discrepancy between natural and AI-generated images.
We propose to leverage large-scale pre-trained models to calculate the uncertainty as the score for detecting AI-generated images.
arXiv Detail & Related papers (2024-12-08T11:32:25Z) - Adaptive Deviation Learning for Visual Anomaly Detection with Data Contamination [20.4008901760593]
We introduce a systematic adaptive method that employs deviation learning to compute anomaly scores end-to-end.
Our proposed method surpasses competing techniques and exhibits both stability and robustness in the presence of data contamination.
arXiv Detail & Related papers (2024-11-14T16:10:15Z) - Synomaly Noise and Multi-Stage Diffusion: A Novel Approach for Unsupervised Anomaly Detection in Ultrasound Imaging [32.99597899937902]
We propose a novel unsupervised anomaly detection framework based on a diffusion model.
The proposed framework incorporates a synthetic anomaly (Synomaly) noise function and a multi-stage diffusion process.
We validate the proposed approach on carotid US, brain MRI, and liver CT datasets.
arXiv Detail & Related papers (2024-11-06T15:43:51Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusion is a framework that modifies AI-generated images into high-quality, imperceptible adversarial examples.
It is effective in both white-box and black-box settings, transforming AI-generated images into high-quality adversarial forgeries.
arXiv Detail & Related papers (2024-08-11T01:22:29Z) - GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
Diffusion models tend to reconstruct normal counterparts of test images with certain noises added.
From the global perspective, the difficulty of reconstructing images with different anomalies is uneven.
We propose a global and local adaptive diffusion model (abbreviated to GLAD) for unsupervised anomaly detection.
arXiv Detail & Related papers (2024-06-11T17:27:23Z) - Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
We propose a unified uncertainty estimation approach for a wide range of cognitive diagnosis models.
We decompose the uncertainty of diagnostic parameters into data aspect and model aspect.
Our method is effective and can provide useful insights into the uncertainty of cognitive diagnosis.
arXiv Detail & Related papers (2024-03-09T13:48:20Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - Projection Regret: Reducing Background Bias for Novelty Detection via
Diffusion Models [72.07462371883501]
We propose emphProjection Regret (PR), an efficient novelty detection method that mitigates the bias of non-semantic information.
PR computes the perceptual distance between the test image and its diffusion-based projection to detect abnormality.
Extensive experiments demonstrate that PR outperforms the prior art of generative-model-based novelty detection methods by a significant margin.
arXiv Detail & Related papers (2023-12-05T09:44:47Z) - AnoDODE: Anomaly Detection with Diffusion ODE [0.0]
Anomaly detection is the process of identifying atypical data samples that significantly deviate from the majority of the dataset.
We propose a new anomaly detection method based on diffusion ODEs by estimating the density of features extracted from medical images.
Our proposed method not only identifie anomalies but also provides interpretability at both the image and pixel levels.
arXiv Detail & Related papers (2023-10-10T08:44:47Z) - Exposing the Fake: Effective Diffusion-Generated Images Detection [14.646957596560076]
This paper proposes a novel detection method called Stepwise Error for Diffusion-generated Image Detection (SeDID)
SeDID exploits the unique attributes of diffusion models, namely deterministic reverse and deterministic denoising errors.
Our work makes a pivotal contribution to distinguishing diffusion model-generated images, marking a significant step in the domain of artificial intelligence security.
arXiv Detail & Related papers (2023-07-12T16:16:37Z) - Confidence-Aware and Self-Supervised Image Anomaly Localisation [7.099105239108548]
We discuss an improved self-supervised single-class training strategy that supports the approximation of probabilistic inference with loosen feature locality constraints.
Our method is integrated into several out-of-distribution (OOD) detection models and we show evidence that our method outperforms the state-of-the-art on various benchmark datasets.
arXiv Detail & Related papers (2023-03-23T12:48:47Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Image-to-Image Regression with Distribution-Free Uncertainty
Quantification and Applications in Imaging [88.20869695803631]
We show how to derive uncertainty intervals around each pixel that are guaranteed to contain the true value.
We evaluate our procedure on three image-to-image regression tasks.
arXiv Detail & Related papers (2022-02-10T18:59:56Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Uncertainty-aware Generalized Adaptive CycleGAN [44.34422859532988]
Unpaired image-to-image translation refers to learning inter-image-domain mapping in an unsupervised manner.
Existing methods often learn deterministic mappings without explicitly modelling the robustness to outliers or predictive uncertainty.
We propose a novel probabilistic method called Uncertainty-aware Generalized Adaptive Cycle Consistency (UGAC)
arXiv Detail & Related papers (2021-02-23T15:22:35Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z) - Unsupervised Lesion Detection via Image Restoration with a Normative
Prior [6.495883501989547]
We propose a probabilistic model that uses a network-based prior as the normative distribution and detect lesions pixel-wise using MAP estimation.
Experiments with gliomas and stroke lesions in brain MRI show that the proposed approach outperforms the state-of-the-art unsupervised methods by a substantial margin.
arXiv Detail & Related papers (2020-04-30T18:03:18Z) - Statistical Agnostic Mapping: a Framework in Neuroimaging based on
Concentration Inequalities [0.0]
We derive a Statistical Agnostic (non-parametric) Mapping at voxel or multi-voxel level.
We propose a novel framework in neuroimaging based on concentration inequalities.
arXiv Detail & Related papers (2019-12-27T18:27:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.