論文の概要: From Real World to Logic and Back: Learning Generalizable Relational Concepts For Long Horizon Robot Planning
- arxiv url: http://arxiv.org/abs/2402.11871v5
- Date: Mon, 02 Jun 2025 19:06:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 01:42:08.831111
- Title: From Real World to Logic and Back: Learning Generalizable Relational Concepts For Long Horizon Robot Planning
- Title(参考訳): 現実世界から論理・バックへ:長距離ロボット計画のための一般化可能な関係概念を学習する
- Authors: Naman Shah, Jayesh Nagpal, Siddharth Srivastava,
- Abstract要約: 人間は限られたデモンストレーションから効率的に一般化するが、ロボットは学習した知識を複雑で目に見えないタスクに移すことに苦慮している。
ロボットが無意味で無意味なデモの小さなセットから直接、自律的にリレーショナル概念を発明できる最初の方法を提案する。
- 参考スコア(独自算出の注目度): 17.18872057576819
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Humans efficiently generalize from limited demonstrations, but robots still struggle to transfer learned knowledge to complex, unseen tasks with longer horizons and increased complexity. We propose the first known method enabling robots to autonomously invent relational concepts directly from small sets of unannotated, unsegmented demonstrations. The learned symbolic concepts are grounded into logic-based world models, facilitating efficient zero-shot generalization to significantly more complex tasks. Empirical results demonstrate that our approach achieves performance comparable to hand-crafted models, successfully scaling execution horizons and handling up to 18 times more objects than seen in training, providing the first autonomous framework for learning transferable symbolic abstractions from raw robot trajectories.
- Abstract(参考訳): 人間は限られたデモンストレーションから効率的に一般化するが、ロボットは学習した知識をより長い地平線と複雑さを増した複雑なタスクに移すことに苦慮している。
ロボットが無意味で無意味なデモの小さなセットから直接、自律的にリレーショナル概念を発明できる最初の方法を提案する。
学習されたシンボリックな概念は論理ベースの世界モデルに根ざし、より複雑なタスクに効率的なゼロショットの一般化を促進する。
実験の結果,本手法は手作りモデルに匹敵する性能を達成し,実行地平線を拡大し,トレーニングで見られる最大18倍のオブジェクトを処理し,ロボット軌道から伝達可能な抽象概念を学習するための最初の自律的フレームワークを提供する。
関連論文リスト
- Inductive Learning of Robot Task Knowledge from Raw Data and Online Expert Feedback [3.10979520014442]
ロボットの自律性の向上は、特に人間とロボットの相互作用シナリオにおいて、信頼と社会的受容の課題を引き起こす。
これはロボット認知能力の解釈可能な実装を必要としており、おそらくはタスク仕様の定義のための論理としての形式的手法に基づいている。
本稿では,タスク仕様を抽出するノイズの多い例から,帰納的論理プログラミングに基づくオフラインアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-01-13T17:25:46Z) - VisualPredicator: Learning Abstract World Models with Neuro-Symbolic Predicates for Robot Planning [86.59849798539312]
本稿では,記号的・神経的知識表現の強みを組み合わせた一階抽象言語Neuro-Symbolic Predicatesを提案する。
提案手法は, サンプルの複雑さの向上, 分布外一般化の強化, 解釈可能性の向上を実現する。
論文 参考訳(メタデータ) (2024-10-30T16:11:05Z) - Learning with Language-Guided State Abstractions [58.199148890064826]
高次元観測空間における一般化可能なポリシー学習は、よく設計された状態表現によって促進される。
我々の手法であるLGAは、自然言語の監視と言語モデルからの背景知識を組み合わせて、目に見えないタスクに適した状態表現を自動構築する。
シミュレーションされたロボットタスクの実験では、LGAは人間によって設計されたものと同様の状態抽象化をもたらすが、そのほんの少しの時間で得られる。
論文 参考訳(メタデータ) (2024-02-28T23:57:04Z) - Building Minimal and Reusable Causal State Abstractions for
Reinforcement Learning [63.58935783293342]
Causal Bisimulation Modeling (CBM) は、各タスクのダイナミクスと報酬関数の因果関係を学習し、最小限のタスク固有の抽象化を導出する手法である。
CBMの学習された暗黙的ダイナミクスモデルは、明確なものよりも根底にある因果関係と状態抽象化を正確に識別する。
論文 参考訳(メタデータ) (2024-01-23T05:43:15Z) - Hierarchical Imitation Learning with Vector Quantized Models [77.67190661002691]
我々は,専門家の軌跡におけるサブゴールの同定に強化学習を用いることを提案する。
同定されたサブゴールに対するベクトル量子化生成モデルを構築し,サブゴールレベルの計画を行う。
実験では、このアルゴリズムは複雑な長い水平決定問題の解法に優れ、最先端のアルゴリズムよりも優れている。
論文 参考訳(メタデータ) (2023-01-30T15:04:39Z) - Learning Efficient Abstract Planning Models that Choose What to Predict [28.013014215441505]
多くのロボティクス分野において,既存の記号演算子学習アプローチが不足していることが示されている。
これは主に、抽象状態におけるすべての観測された変化を正確に予測する演算子を学習しようとするためである。
我々は,特定の目標を達成するための抽象的計画に必要な変化をモデル化するだけで,「予測すべきものを選択する」演算子を学習することを提案する。
論文 参考訳(メタデータ) (2022-08-16T13:12:59Z) - Abstract Interpretation for Generalized Heuristic Search in Model-Based
Planning [50.96320003643406]
ドメイン・ジェネラル・モデル・ベース・プランナーは、しばしば記号的世界モデルの緩和を通じて探索を構築することによって一般性を導出する。
抽象解釈がこれらの抽象化の統一フレームワークとして機能し、よりリッチな世界モデルに探索の範囲を広げる方法について説明する。
また、これらは学習と統合することができ、エージェントは抽象的な情報を通じて、新しい世界のモデルで計画を開始することができる。
論文 参考訳(メタデータ) (2022-08-05T00:22:11Z) - Inventing Relational State and Action Abstractions for Effective and
Efficient Bilevel Planning [26.715198108255162]
我々は状態と行動の抽象化を学習するための新しいフレームワークを開発する。
我々は、対象のアイデンティティや数値を一般化するリレーショナル、ニューロシンボリックな抽象化を学ぶ。
学習した抽象化によって、より長い地平線のホールドアウトタスクを迅速に解決できることが示されています。
論文 参考訳(メタデータ) (2022-03-17T22:13:09Z) - Using Deep Learning to Bootstrap Abstractions for Hierarchical Robot
Planning [27.384742641275228]
階層的な計画プロセス全体をブートストラップするための新しいアプローチを提案する。
これは、新しい環境に対する抽象状態とアクションが自動的に計算される方法を示している。
学習した抽象概念を、新しいマルチソース双方向階層型ロボット計画アルゴリズムに用いている。
論文 参考訳(メタデータ) (2022-02-02T08:11:20Z) - Transferable Task Execution from Pixels through Deep Planning Domain
Learning [46.88867228115775]
階層モデルを学ぶために,DPDL(Deep Planning Domain Learning)を提案する。
DPDLは、現在の象徴的世界状態からなる論理述語セットの値を予測する高レベルモデルを学ぶ。
これにより、ロボットが明示的に訓練されていなくても、複雑なマルチステップタスクを実行できます。
論文 参考訳(メタデータ) (2020-03-08T05:51:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。