論文の概要: From Real World to Logic and Back: Learning Generalizable Relational Concepts For Long Horizon Robot Planning
- arxiv url: http://arxiv.org/abs/2402.11871v6
- Date: Fri, 03 Oct 2025 19:35:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 16:52:58.127269
- Title: From Real World to Logic and Back: Learning Generalizable Relational Concepts For Long Horizon Robot Planning
- Title(参考訳): 現実世界から論理・バックへ:長距離ロボット計画のための一般化可能な関係概念を学習する
- Authors: Naman Shah, Jayesh Nagpal, Siddharth Srivastava,
- Abstract要約: 本稿では,ロボットが少数の生・未分割・無注釈のデモから直接,記号的・関係的概念を創出することを可能にする方法を提案する。
我々のフレームワークは手動のシンボルモデルと同等のパフォーマンスを達成し、一方、トレーニングをはるかに超越した実行地平線へのスケーリングを実現している。
- 参考スコア(独自算出の注目度): 16.115874470700113
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robots still lag behind humans in their ability to generalize from limited experience, particularly when transferring learned behaviors to long-horizon tasks in unseen environments. We present the first method that enables robots to autonomously invent symbolic, relational concepts directly from a small number of raw, unsegmented, and unannotated demonstrations. From these, the robot learns logic-based world models that support zero-shot generalization to tasks of far greater complexity than those in training. Our framework achieves performance on par with hand-engineered symbolic models, while scaling to execution horizons far beyond training and handling up to 18$\times$ more objects than seen during learning. The results demonstrate a framework for autonomously acquiring transferable symbolic abstractions from raw robot experience, contributing toward the development of interpretable, scalable, and generalizable robot planning systems. Project website and code: https://aair-lab.github.io/r2l-lamp.
- Abstract(参考訳): ロボットは、限られた経験から、特に学習した振る舞いを、目に見えない環境での長い水平なタスクに移す際に、人間に遅れを取っている。
本研究は,ロボットが少数の生・未分割・無注釈のデモから直接,記号的・関係的概念を自律的に創出することを可能にするための最初の方法である。
このロボットは、ゼロショットの一般化をサポートするロジックベースの世界モデルから、訓練中のものよりもはるかに複雑なタスクを学習する。
我々のフレームワークは手動のシンボルモデルと同等のパフォーマンスを達成し、一方、学習中に見るよりも18$\times以上のオブジェクトを処理できる。
その結果,移動可能な抽象概念を生のロボット体験から自律的に獲得する枠組みが示され,解釈可能でスケーラブルで汎用的なロボット計画システムの開発に寄与した。
プロジェクトウェブサイトとコード:https://aair-lab.github.io/r2l-lamp.com
関連論文リスト
- Efficient Sensorimotor Learning for Open-world Robot Manipulation [6.1694031687146955]
この論文は、効率的な感覚運動学習手法を用いて、オープンワールドロボットマニピュレーション問題に取り組む。
効率的な感覚運動学習を実現するための鍵は、限られた量の実演データに存在する規則的なパターンを活用することである。
論文 参考訳(メタデータ) (2025-05-07T18:23:58Z) - RoBridge: A Hierarchical Architecture Bridging Cognition and Execution for General Robotic Manipulation [90.81956345363355]
RoBridgeは、一般的なロボット操作のための階層的なインテリジェントアーキテクチャである。
大規模事前学習型視覚言語モデル(VLM)に基づくハイレベル認知プランナー(HCP)で構成されている。
強化学習の手続き的スキルを解き放ち、認知と実行のギャップを効果的に埋める。
論文 参考訳(メタデータ) (2025-05-03T06:17:18Z) - Neuro-Symbolic Imitation Learning: Discovering Symbolic Abstractions for Skill Learning [15.26375359103084]
本稿では,ニューロシンボリックな模倣学習フレームワークを提案する。
低レベル状態-作用空間を抽象化する記号表現を学ぶ。
学習された表現はタスクをより簡単なサブタスクに分解し、システムはシンボリックプランニングを利用することができる。
論文 参考訳(メタデータ) (2025-03-27T11:50:29Z) - Inductive Learning of Robot Task Knowledge from Raw Data and Online Expert Feedback [3.10979520014442]
ロボットの自律性の向上は、特に人間とロボットの相互作用シナリオにおいて、信頼と社会的受容の課題を引き起こす。
これはロボット認知能力の解釈可能な実装を必要としており、おそらくはタスク仕様の定義のための論理としての形式的手法に基づいている。
本稿では,タスク仕様を抽出するノイズの多い例から,帰納的論理プログラミングに基づくオフラインアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-01-13T17:25:46Z) - VisualPredicator: Learning Abstract World Models with Neuro-Symbolic Predicates for Robot Planning [86.59849798539312]
本稿では,記号的・神経的知識表現の強みを組み合わせた一階抽象言語Neuro-Symbolic Predicatesを提案する。
提案手法は, サンプルの複雑さの向上, 分布外一般化の強化, 解釈可能性の向上を実現する。
論文 参考訳(メタデータ) (2024-10-30T16:11:05Z) - Generalized Robot Learning Framework [10.03174544844559]
本稿では,様々なロボットや環境に容易に再現可能かつ伝達可能な,低コストなロボット学習フレームワークを提案する。
我々は,産業用ロボットにおいても,デプロイ可能な模倣学習をうまく適用できることを実証した。
論文 参考訳(メタデータ) (2024-09-18T15:34:31Z) - Imperative Learning: A Self-supervised Neuro-Symbolic Learning Framework for Robot Autonomy [31.818923556912495]
我々は,ロボット自律のための自己教師型ニューロシンボリック(NeSy)計算フレームワーク,インペラティブラーニング(IL)を導入する。
ILを2段階最適化(BLO)として定式化し、3つのモジュール間の相互学習を可能にする。
ILはロボットの自律性を大幅に向上させ、多様な領域にわたるさらなる研究を促進することを期待している。
論文 参考訳(メタデータ) (2024-06-23T12:02:17Z) - Learning with Language-Guided State Abstractions [58.199148890064826]
高次元観測空間における一般化可能なポリシー学習は、よく設計された状態表現によって促進される。
我々の手法であるLGAは、自然言語の監視と言語モデルからの背景知識を組み合わせて、目に見えないタスクに適した状態表現を自動構築する。
シミュレーションされたロボットタスクの実験では、LGAは人間によって設計されたものと同様の状態抽象化をもたらすが、そのほんの少しの時間で得られる。
論文 参考訳(メタデータ) (2024-02-28T23:57:04Z) - RoboCodeX: Multimodal Code Generation for Robotic Behavior Synthesis [102.1876259853457]
汎用ロボット行動合成のための木構造多モードコード生成フレームワークRoboCodeXを提案する。
RoboCodeXは、高レベルの人間の命令を複数のオブジェクト中心の操作ユニットに分解する。
概念的および知覚的理解を制御コマンドにマッピングする能力をさらに強化するため、事前学習のための特別なマルチモーダル推論データセットを収集し、教師付き微調整のための反復的自己更新手法を導入する。
論文 参考訳(メタデータ) (2024-02-25T15:31:43Z) - Building Minimal and Reusable Causal State Abstractions for
Reinforcement Learning [63.58935783293342]
Causal Bisimulation Modeling (CBM) は、各タスクのダイナミクスと報酬関数の因果関係を学習し、最小限のタスク固有の抽象化を導出する手法である。
CBMの学習された暗黙的ダイナミクスモデルは、明確なものよりも根底にある因果関係と状態抽象化を正確に識別する。
論文 参考訳(メタデータ) (2024-01-23T05:43:15Z) - Hierarchical Imitation Learning with Vector Quantized Models [77.67190661002691]
我々は,専門家の軌跡におけるサブゴールの同定に強化学習を用いることを提案する。
同定されたサブゴールに対するベクトル量子化生成モデルを構築し,サブゴールレベルの計画を行う。
実験では、このアルゴリズムは複雑な長い水平決定問題の解法に優れ、最先端のアルゴリズムよりも優れている。
論文 参考訳(メタデータ) (2023-01-30T15:04:39Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
本稿では,ユーザが新しいタスクを定義するための"プログラミング不要"なアプローチを提供する,視覚に基づくデクスタラスな操作システムについて述べる。
本システムには,最終タスクと中間タスクを画像例で定義するためのフレームワークが組み込まれている。
実世界における多段階物体操作の4指ロボットハンドラーによる実験結果
論文 参考訳(メタデータ) (2022-12-19T22:50:40Z) - Learning Efficient Abstract Planning Models that Choose What to Predict [28.013014215441505]
多くのロボティクス分野において,既存の記号演算子学習アプローチが不足していることが示されている。
これは主に、抽象状態におけるすべての観測された変化を正確に予測する演算子を学習しようとするためである。
我々は,特定の目標を達成するための抽象的計画に必要な変化をモデル化するだけで,「予測すべきものを選択する」演算子を学習することを提案する。
論文 参考訳(メタデータ) (2022-08-16T13:12:59Z) - Abstract Interpretation for Generalized Heuristic Search in Model-Based
Planning [50.96320003643406]
ドメイン・ジェネラル・モデル・ベース・プランナーは、しばしば記号的世界モデルの緩和を通じて探索を構築することによって一般性を導出する。
抽象解釈がこれらの抽象化の統一フレームワークとして機能し、よりリッチな世界モデルに探索の範囲を広げる方法について説明する。
また、これらは学習と統合することができ、エージェントは抽象的な情報を通じて、新しい世界のモデルで計画を開始することができる。
論文 参考訳(メタデータ) (2022-08-05T00:22:11Z) - Inventing Relational State and Action Abstractions for Effective and
Efficient Bilevel Planning [26.715198108255162]
我々は状態と行動の抽象化を学習するための新しいフレームワークを開発する。
我々は、対象のアイデンティティや数値を一般化するリレーショナル、ニューロシンボリックな抽象化を学ぶ。
学習した抽象化によって、より長い地平線のホールドアウトタスクを迅速に解決できることが示されています。
論文 参考訳(メタデータ) (2022-03-17T22:13:09Z) - Using Deep Learning to Bootstrap Abstractions for Hierarchical Robot
Planning [27.384742641275228]
階層的な計画プロセス全体をブートストラップするための新しいアプローチを提案する。
これは、新しい環境に対する抽象状態とアクションが自動的に計算される方法を示している。
学習した抽象概念を、新しいマルチソース双方向階層型ロボット計画アルゴリズムに用いている。
論文 参考訳(メタデータ) (2022-02-02T08:11:20Z) - Transferable Task Execution from Pixels through Deep Planning Domain
Learning [46.88867228115775]
階層モデルを学ぶために,DPDL(Deep Planning Domain Learning)を提案する。
DPDLは、現在の象徴的世界状態からなる論理述語セットの値を予測する高レベルモデルを学ぶ。
これにより、ロボットが明示的に訓練されていなくても、複雑なマルチステップタスクを実行できます。
論文 参考訳(メタデータ) (2020-03-08T05:51:04Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
我々は、自律的なデータ収集を通じて継続的に改善できる模倣学習システムを構築している。
我々は、ロボット自身の試行を、実際に試みたタスク以外のタスクのデモとして活用する。
従来の模倣学習のアプローチとは対照的に,本手法は,継続的改善のための疎い監視によるデータ収集を自律的に行うことができる。
論文 参考訳(メタデータ) (2020-02-25T18:56:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。