Automated Deterministic Auction Design with Objective Decomposition
- URL: http://arxiv.org/abs/2402.11904v2
- Date: Mon, 22 Jul 2024 14:32:46 GMT
- Title: Automated Deterministic Auction Design with Objective Decomposition
- Authors: Zhijian Duan, Haoran Sun, Yichong Xia, Siqiang Wang, Zhilin Zhang, Chuan Yu, Jian Xu, Bo Zheng, Xiaotie Deng,
- Abstract summary: This paper introduces OD-VVCA, an objective decomposition approach for automated designing Virtual Valuations Combinatorial Auctions (VVCAs)
We utilize a parallelizable dynamic programming algorithm to compute the allocation and revenue outcomes of a VVCA efficiently.
We then decompose the revenue objective function into continuous and piecewise constant discontinuous components, optimizing each using distinct methods.
- Score: 31.918952529696885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying high-revenue mechanisms that are both dominant strategy incentive compatible (DSIC) and individually rational (IR) is a fundamental challenge in auction design. While theoretical approaches have encountered bottlenecks in multi-item auctions, there has been much empirical progress in automated designing such mechanisms using machine learning. However, existing research primarily focuses on randomized auctions, with less attention given to the more practical deterministic auctions. Therefore, this paper investigates the automated design of deterministic auctions and introduces OD-VVCA, an objective decomposition approach for automated designing Virtual Valuations Combinatorial Auctions (VVCAs). Firstly, we restrict our mechanism to deterministic VVCAs, which are inherently DSIC and IR. Afterward, we utilize a parallelizable dynamic programming algorithm to compute the allocation and revenue outcomes of a VVCA efficiently. We then decompose the revenue objective function into continuous and piecewise constant discontinuous components, optimizing each using distinct methods. Extensive experiments show that OD-VVCA achieves high revenue in multi-item auctions, especially in large-scale settings where it outperforms both randomized and deterministic baselines, indicating its efficacy and scalability.
Related papers
- An Innovative Attention-based Ensemble System for Credit Card Fraud Detection [5.486205584465161]
We present a unique attention-based ensemble model for detecting credit card fraud.
The ensemble model attains an accuracy of 99.95% with an area under the curve (AUC) of 1.
arXiv Detail & Related papers (2024-10-01T09:56:23Z) - LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
We introduce LoRA-Ensemble, a parameter-efficient deep ensemble method for self-attention networks.
By employing a single pre-trained self-attention network with weights shared across all members, we train member-specific low-rank matrices for the attention projections.
Our method exhibits superior calibration compared to explicit ensembles and achieves similar or better accuracy across various prediction tasks and datasets.
arXiv Detail & Related papers (2024-05-23T11:10:32Z) - Refined Mechanism Design for Approximately Structured Priors via Active
Regression [50.71772232237571]
We consider the problem of a revenue-maximizing seller with a large number of items for sale to $n$ strategic bidders.
It is well-known that optimal and even approximately-optimal mechanisms for this setting are notoriously difficult to characterize or compute.
arXiv Detail & Related papers (2023-10-11T20:34:17Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - Machine Learning-Powered Combinatorial Clock Auction [13.724491757145385]
We study the design of iterative auctions (ICAs)
We present a novel method for training an ML model on demand queries.
We experimentally evaluate our ML-based demand mechanism in several spectrum auction domains.
arXiv Detail & Related papers (2023-08-20T10:43:50Z) - Robust multi-item auction design using statistical learning: Overcoming
uncertainty in bidders' types distributions [6.5920927560926295]
Our proposed approach utilizes nonparametric density estimation to accurately estimate bidders' types from historical bids.
To further enhance efficiency of our mechanism, we introduce two novel strategies for query reduction.
Simulation experiments conducted on both small-scale and large-scale data demonstrate that our mechanism consistently outperforms existing methods in terms of revenue design and query reduction.
arXiv Detail & Related papers (2023-02-02T08:32:55Z) - Bayesian Optimization-based Combinatorial Assignment [10.73407470973258]
We study the assignment domain, which includes auctions and course allocation.
The main challenge in this domain is that the bundle space grows exponentially in the number of items.
arXiv Detail & Related papers (2022-08-31T08:47:02Z) - Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline
Reinforcement Learning [114.36124979578896]
We design a dynamic mechanism using offline reinforcement learning algorithms.
Our algorithm is based on the pessimism principle and only requires a mild assumption on the coverage of the offline data set.
arXiv Detail & Related papers (2022-05-05T05:44:26Z) - Learning Dynamic Mechanisms in Unknown Environments: A Reinforcement
Learning Approach [130.9259586568977]
We propose novel learning algorithms to recover the dynamic Vickrey-Clarke-Grove (VCG) mechanism over multiple rounds of interaction.
A key contribution of our approach is incorporating reward-free online Reinforcement Learning (RL) to aid exploration over a rich policy space.
arXiv Detail & Related papers (2022-02-25T16:17:23Z) - Neural Auction: End-to-End Learning of Auction Mechanisms for E-Commerce
Advertising [42.7415188090209]
We develop deep models to efficiently extract contexts from auctions, providing rich features for auction design.
DNAs have been successfully deployed in the e-commerce advertising system at Taobao.
arXiv Detail & Related papers (2021-06-07T13:20:40Z) - Automated Mechanism Design for Classification with Partial Verification [64.69418921224529]
We study the problem of automated mechanism design with partial verification.
We focus on truthful mechanisms in the setting where all types share the same preference over outcomes.
arXiv Detail & Related papers (2021-04-12T03:29:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.