論文の概要: All Language Models Large and Small
- arxiv url: http://arxiv.org/abs/2402.12061v2
- Date: Wed, 5 Jun 2024 15:08:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 01:11:46.040241
- Title: All Language Models Large and Small
- Title(参考訳): すべての言語モデルが大小
- Authors: Zhixun Chen, Yali Du, David Mguni,
- Abstract要約: 多くの主要な言語モデル(LM)は、訓練と実行の両方で高強度の計算資源を使用する。
これは、デプロイメントのリソースコストを削減し、意思決定タスクの実行を高速化するという課題を引き起こします。
本稿では,Language Optimising Network Distribution (LONDI) フレームワークという新しいLMフレームワークを紹介する。
- 参考スコア(独自算出の注目度): 4.676589803026312
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many leading language models (LMs) use high-intensity computational resources both during training and execution. This poses the challenge of lowering resource costs for deployment and faster execution of decision-making tasks among others. We introduce a novel plug-and-play LM framework named Language Optimising Network Distribution (LONDI) framework. LONDI learns to selectively employ large LMs only where complex decision-making and reasoning are required while using low-resource LMs (i.e. LMs require less GPU usage, but may not be able to solve the problem alone) everywhere else. LONDI consists of a system of two (off-)policy networks, an LM, a large LM (LLM), and a reinforcement learning module that uses switching controls to quickly learn which system states to call the LLM. We then introduce a variant of LONDI that maintains budget constraints on LLM calls and hence its resource usage. Theoretically, we prove LONDI learns the subset of system states to activate the LLM required to solve the task. We then prove that LONDI converges to optimal solutions while also preserving budgetary constraints on LLM calls almost surely enabling it to solve various tasks while significantly lowering computational costs. We test LONDI's performance in a range of tasks in ScienceWorld and BabyAI-Text and demonstrate that LONDI can solve tasks only solvable by resource-intensive LLMs while reducing GPU usage by up to 30%.
- Abstract(参考訳): 多くの主要な言語モデル(LM)は、訓練と実行の両方で高強度の計算資源を使用する。
これは、デプロイメントのリソースコストを削減し、意思決定タスクの実行を高速化するという課題を引き起こします。
本稿では,Language Optimising Network Distribution (LONDI) フレームワークという新しいLMフレームワークを紹介する。
LONDIは、低リソースのLMを使用する場合、複雑な意思決定と推論を必要とする場合にのみ、大きなLMを選択的に採用することを学ぶ。
LONDIは、2つの(オフ・オフ)ポリシーネットワーク、LM、大きなLM(LLM)と、スイッチング制御を使った強化学習モジュールで構成される。
次に LLM コールの予算制約とリソース使用量を維持する LONDI の変種を導入する。
理論的には、LONDIはシステム状態のサブセットを学習し、その課題を解決するのに必要なLLMを活性化する。
次に、LONDIが最適解に収束すると同時に、LLMコールの予算制約をほぼ確実に保ちながら、計算コストを大幅に削減しつつ、様々なタスクを解決できることを証明した。
我々は、ScienceWorldとBabyAI-TextのタスクでLONDIのパフォーマンスをテストし、LONDIはリソース集約型LLMでのみ解決可能なタスクを解き、GPU使用率を最大30%削減できることを示した。
関連論文リスト
- LLaVA-KD: A Framework of Distilling Multimodal Large Language Models [70.19607283302712]
本稿では,l-MLLMからs-MLLMへ知識を伝達する新しいフレームワークを提案する。
具体的には,l-MLLMとs-MLLMの視覚的テキスト出力分布のばらつきを最小限に抑えるために,MDist(Multimodal Distillation)を導入する。
また,S-MLLMの可能性を完全に活用するための3段階学習手法を提案する。
論文 参考訳(メタデータ) (2024-10-21T17:41:28Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
大規模言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示しており、最近、IoT(Internet of Things)アプリケーションにLLMの能力を統合することが研究の注目を集めている。
セキュリティ上の懸念から、多くの機関は最先端の商用LLMサービスへのアクセスを避け、ローカルネットワーク環境でのオープンソースLLMのデプロイと利用を必要としている。
本研究では,LLMを用いた生成IoT(Generative IoT)システムを提案する。
論文 参考訳(メタデータ) (2024-06-14T19:24:00Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - Empowering Large Language Models on Robotic Manipulation with Affordance Prompting [23.318449345424725]
大規模な言語モデルは、制御シーケンスを適切に生成することで物理世界と相互作用することができない。
既存のLLMベースのアプローチでは、事前定義されたスキルや事前訓練されたサブ政治に頼ることでこの問題を回避することができる。
サブタスクプランナとモーションコントローラの両方をLLM+A(ffordance)と呼ぶフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-17T03:06:32Z) - Data-Centric Financial Large Language Models [27.464319154543173]
大規模言語モデル(LLM)は自然言語のタスクを約束するが、金融のような複雑なドメインに直接適用した場合に苦労する。
我々は、LLMが金融業務をよりうまく扱えるようにするために、データ中心のアプローチを提案する。
論文 参考訳(メタデータ) (2023-10-07T04:53:31Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
大規模言語モデル(LLM)は、最近、テキストを介してコンテキスト対応の応答を提供するという、印象的な能力を実証した。
この能力は、パターン補完に関連するシーケンシャルな意思決定タスクにおいて、妥当なソリューションを予測するために使われる可能性がある。
第一強化学習(RL)エージェントによって部分的に完了したタスクに対する解を提案するために,LLMのこの予測能力を利用するLaGRを紹介した。
論文 参考訳(メタデータ) (2023-08-21T02:07:35Z) - Enabling Intelligent Interactions between an Agent and an LLM: A Reinforcement Learning Approach [31.6589518077397]
大規模言語モデル(LLM)は、大量のテキストデータセットから得られた膨大な量の世界の知識を符号化する。
LLMは、高レベルな命令を提供することで、複雑なシーケンシャルな意思決定タスクを解決するための実施エージェントを支援することができる。
本研究では,高レベルの命令に対してLLMを問合せする必要がある場合に学習する強化学習ベースのアプローチである When2Ask を提案する。
論文 参考訳(メタデータ) (2023-06-06T11:49:09Z) - Cheap and Quick: Efficient Vision-Language Instruction Tuning for Large
Language Models [77.2078051555533]
大規模言語モデル(LLM)の有効なVL適応のための,新規で安価なソリューションを提案する。
画像エンコーダとLLMを接続するために大きなニューラルネットワークを使用する代わりに、MMAは軽量モジュール、すなわちアダプタを採用する。
MMAはまた、LLMがシングルモードとマルチモードの命令を自動シフトするのを助けるルーティングアルゴリズムも備えている。
論文 参考訳(メタデータ) (2023-05-24T11:06:15Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。