Tensor decompositions with applications to LU and SLOCC equivalence of multipartite pure states
- URL: http://arxiv.org/abs/2402.12542v2
- Date: Tue, 26 Mar 2024 14:38:24 GMT
- Title: Tensor decompositions with applications to LU and SLOCC equivalence of multipartite pure states
- Authors: Luke Oeding, Ian Tan,
- Abstract summary: Kraus' (2010) algorithm used the HOSVD to compute normal forms of almost all $n$-qubit pure states under the action of the local unitary group.
We produce similar algorithms that compute normal forms for almost all $n$-qubit pure states under the action of the SLOCC group.
- Score: 0.552480439325792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a broad lemma, one consequence of which is the higher order singular value decomposition (HOSVD) of tensors defined by DeLathauwer, DeMoor and Vandewalle (2000). By an analogous application of the lemma, we find a complex orthogonal version of the HOSVD. Kraus' (2010) algorithm used the HOSVD to compute normal forms of almost all $n$-qubit pure states under the action of the local unitary group. Taking advantage of the double cover $\operatorname{SL}_2(\mathbb{C}) \times \operatorname{SL}_2(\mathbb{C}) \to \operatorname{SO}_4({\mathbb{C}})$, we produce similar algorithms (distinguished by the parity of $n$) that compute normal forms for almost all $n$-qubit pure states under the action of the SLOCC group.
Related papers
- Nearly Optimal Sample Complexity of Offline KL-Regularized Contextual Bandits under Single-Policy Concentrability [49.96531901205305]
We propose the emphfirst algorithm with $tildeO(epsilon-1)$ sample complexity under single-policy concentrability for offline contextual bandits.
Our proof leverages the strong convexity of the KL regularization, and the conditional non-negativity of the gap between the true reward and its pessimistic estimator.
We extend our algorithm to contextual dueling bandits and achieve a similar nearly optimal sample complexity.
arXiv Detail & Related papers (2025-02-09T22:14:45Z) - SoS Certifiability of Subgaussian Distributions and its Algorithmic Applications [37.208622097149714]
We prove that there is a universal constant $C>0$ so that for every $d inmathbb N$, every centered subgaussian distribution $mathcal D$ on $mathbb Rd$, and every even $p inmathbb N$, the $d-optimal inmathbb N$, and the $d-optimal inmathbb N$.
This establishes that every subgaussian distribution is emphS-certifiably subgaussian -- a condition that yields efficient learning algorithms for a wide variety of
arXiv Detail & Related papers (2024-10-28T16:36:58Z) - Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
We consider the problem of learning an $varepsilon$-optimal policy in a general class of continuous-space Markov decision processes (MDPs) having smooth Bellman operators.
Key to our solution is a novel projection technique based on ideas from harmonic analysis.
Our result bridges the gap between two popular but conflicting perspectives on continuous-space MDPs.
arXiv Detail & Related papers (2024-05-10T09:58:47Z) - Sample-efficient Learning of Infinite-horizon Average-reward MDPs with General Function Approximation [53.17668583030862]
We study infinite-horizon average-reward Markov decision processes (AMDPs) in the context of general function approximation.
We propose a novel algorithmic framework named Local-fitted Optimization with OPtimism (LOOP)
We show that LOOP achieves a sublinear $tildemathcalO(mathrmpoly(d, mathrmsp(V*)) sqrtTbeta )$ regret, where $d$ and $beta$ correspond to AGEC and log-covering number of the hypothesis class respectively
arXiv Detail & Related papers (2024-04-19T06:24:22Z) - Combinatorial Stochastic-Greedy Bandit [79.1700188160944]
We propose a novelgreedy bandit (SGB) algorithm for multi-armed bandit problems when no extra information other than the joint reward of the selected set of $n$ arms at each time $tin [T]$ is observed.
SGB adopts an optimized-explore-then-commit approach and is specifically designed for scenarios with a large set of base arms.
arXiv Detail & Related papers (2023-12-13T11:08:25Z) - Revisiting Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [69.15976031704687]
We propose IAC (Instance-Adaptive Clustering), the first algorithm whose performance matches the instance-specific lower bounds both in expectation and with high probability.
IAC maintains an overall computational complexity of $ mathcalO(n, textpolylog(n) $, making it scalable and practical for large-scale problems.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - Complexity of Block Coordinate Descent with Proximal Regularization and
Applications to Wasserstein CP-dictionary Learning [1.4010916616909743]
We consider the block coordinate descent of Gauss-Sdel type with regularization (BCD-PR)
We show that an W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(W(
arXiv Detail & Related papers (2023-06-04T17:52:49Z) - Differentially-Private Hierarchical Clustering with Provable
Approximation Guarantees [79.59010418610625]
We study differentially private approximation algorithms for hierarchical clustering.
We show strong lower bounds for the problem: that any $epsilon$-DP algorithm must exhibit $O(|V|2/ epsilon)$-additive error for an input dataset.
We propose a private $1+o(1)$ approximation algorithm which also recovers the blocks exactly.
arXiv Detail & Related papers (2023-01-31T19:14:30Z) - Private estimation algorithms for stochastic block models and mixture
models [63.07482515700984]
General tools for designing efficient private estimation algorithms.
First efficient $(epsilon, delta)$-differentially private algorithm for both weak recovery and exact recovery.
arXiv Detail & Related papers (2023-01-11T09:12:28Z) - Krylov Complexity for Jacobi Coherent States [0.0]
We show how the Lanczos algorithm that iteratively generates the Krylov basis can be augmented to treat coherent states associated with the Jacobi group.
We exploit this to benchmark a scheme to numerically compute the Lanczos coefficients which, in principle, generalizes to the more general Jacobi group $H_nrtimes Sp(2n,mathbbR)$.
arXiv Detail & Related papers (2022-12-28T09:21:58Z) - Generalization Bounds for Stochastic Gradient Descent via Localized
$\varepsilon$-Covers [16.618918548497223]
We propose a new covering technique localized for the trajectories of SGD.
This localization provides an algorithm-specific clustering measured by the bounds number.
We derive these results in various contexts and improve the known state-of-the-art label rates.
arXiv Detail & Related papers (2022-09-19T12:11:07Z) - Scalable Differentially Private Clustering via Hierarchically Separated
Trees [82.69664595378869]
We show that our method computes a solution with cost at most $O(d3/2log n)cdot OPT + O(k d2 log2 n / epsilon2)$, where $epsilon$ is the privacy guarantee.
Although the worst-case guarantee is worse than that of state of the art private clustering methods, the algorithm we propose is practical.
arXiv Detail & Related papers (2022-06-17T09:24:41Z) - Operator complexity: a journey to the edge of Krylov space [0.0]
Krylov complexity, or K-complexity', quantifies this growth with respect to a special basis.
We study the evolution of K-complexity in finite-entropy systems for time scales greater than the scrambling time.
arXiv Detail & Related papers (2020-09-03T18:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.