論文の概要: Advancing Monocular Video-Based Gait Analysis Using Motion Imitation
with Physics-Based Simulation
- arxiv url: http://arxiv.org/abs/2402.12676v1
- Date: Tue, 20 Feb 2024 02:48:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-21 17:21:57.475584
- Title: Advancing Monocular Video-Based Gait Analysis Using Motion Imitation
with Physics-Based Simulation
- Title(参考訳): 物理シミュレーションを用いた運動模倣による単眼映像に基づく歩行解析の進歩
- Authors: Nikolaos Smyrnakis, Tasos Karakostas, R. James Cotton
- Abstract要約: 我々は、強化学習を用いて人間の動きの物理シミュレーションを制御し、ビデオで見られる動きを再現する。
これにより、推定された歩幅と歩行速度の精度を向上しつつ、推定された動きを物理的に可塑性にすることができる。
- 参考スコア(独自算出の注目度): 2.07180164747172
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Gait analysis from videos obtained from a smartphone would open up many
clinical opportunities for detecting and quantifying gait impairments. However,
existing approaches for estimating gait parameters from videos can produce
physically implausible results. To overcome this, we train a policy using
reinforcement learning to control a physics simulation of human movement to
replicate the movement seen in video. This forces the inferred movements to be
physically plausible, while improving the accuracy of the inferred step length
and walking velocity.
- Abstract(参考訳): スマートフォンから取得したビデオからの歩行分析は、歩行障害の検出と定量化に多くの臨床機会を開くだろう。
しかし、ビデオから歩行パラメータを推定する既存のアプローチは、物理的に有意義な結果を生み出す可能性がある。
これを克服するために,強化学習を用いて人間の運動の物理シミュレーションを制御し,映像で見られる動きを再現する方針を訓練する。
これにより、推定された動きは物理的に妥当で、推定された歩幅と歩行速度の精度が向上する。
関連論文リスト
- Optimal-state Dynamics Estimation for Physics-based Human Motion Capture from Videos [6.093379844890164]
オンライン環境での運動学観測に物理モデルを選択的に組み込む新しい手法を提案する。
リカレントニューラルネットワークを導入し、キネマティックス入力とシミュレートされた動作を熱心にバランスするカルマンフィルタを実現する。
提案手法は,物理に基づく人間のポーズ推定作業に優れ,予測力学の物理的妥当性を示す。
論文 参考訳(メタデータ) (2024-10-10T10:24:59Z) - DreamPhysics: Learning Physical Properties of Dynamic 3D Gaussians with Video Diffusion Priors [75.83647027123119]
本稿では,映像拡散前の物体の物理的特性を学習することを提案する。
次に,物理に基づくMaterial-Point-Methodシミュレータを用いて,現実的な動きを伴う4Dコンテンツを生成する。
論文 参考訳(メタデータ) (2024-06-03T16:05:25Z) - Physics-Guided Human Motion Capture with Pose Probability Modeling [35.159506668475565]
既存の解は常にキネマティックな結果を参照運動として採用し、物理は後処理モジュールとして扱われる。
本研究では,逆拡散過程における物理法則を用いて,モデル化されたポーズ確率分布から人間の動きを再構成する。
数回の反復で、物理に基づく追跡とキネマティック・デノゲーションは互いに促進し、物理的に妥当な人間の動きを生成する。
論文 参考訳(メタデータ) (2023-08-19T05:28:03Z) - PhysDiff: Physics-Guided Human Motion Diffusion Model [101.1823574561535]
既存の運動拡散モデルは、拡散過程における物理学の法則をほとんど無視する。
PhysDiffは拡散過程に物理的制約を組み込む。
提案手法は,最先端の動作品質を実現し,身体的可視性を大幅に向上させる。
論文 参考訳(メタデータ) (2022-12-05T18:59:52Z) - Skeleton2Humanoid: Animating Simulated Characters for
Physically-plausible Motion In-betweening [59.88594294676711]
現代の深層学習に基づく運動合成アプローチは、合成された運動の物理的妥当性をほとんど考慮していない。
テスト時に物理指向の動作補正を行うシステムSkeleton2Humanoid'を提案する。
挑戦的なLaFAN1データセットの実験は、物理的妥当性と精度の両方の観点から、我々のシステムが先行手法を著しく上回っていることを示している。
論文 参考訳(メタデータ) (2022-10-09T16:15:34Z) - D&D: Learning Human Dynamics from Dynamic Camera [55.60512353465175]
本稿では、物理の法則を活かしたD&D(Learning Human Dynamics from Dynamic Camera)を紹介する。
私たちのアプローチは完全にニューラルネットワークで、物理エンジンのオフライン最適化やシミュレーションなしで動作します。
論文 参考訳(メタデータ) (2022-09-19T06:51:02Z) - Trajectory Optimization for Physics-Based Reconstruction of 3d Human
Pose from Monocular Video [31.96672354594643]
本研究は,単眼映像から身体的に可視な人間の動きを推定する作業に焦点をあてる。
物理を考慮しない既存のアプローチは、しばしば運動人工物と時間的に矛盾した出力を生み出す。
提案手法は,Human3.6Mベンチマークにおける既存の物理法と競合する結果が得られることを示す。
論文 参考訳(メタデータ) (2022-05-24T18:02:49Z) - Differentiable Dynamics for Articulated 3d Human Motion Reconstruction [29.683633237503116]
DiffPhyは、映像から3次元の人間の動きを再現する物理モデルである。
モノクロ映像から物理的に可視な3次元動作を正確に再現できることを実証し,本モデルの有効性を検証した。
論文 参考訳(メタデータ) (2022-05-24T17:58:37Z) - Physics-based Human Motion Estimation and Synthesis from Videos [0.0]
単眼のRGBビデオから直接、身体的に可視な人間の動きの生成モデルを訓練するための枠組みを提案する。
提案手法のコアとなるのは,不完全な画像に基づくポーズ推定を補正する新しい最適化式である。
その結果,我々の身体的補正動作は,ポーズ推定における先行作業よりも有意に優れていた。
論文 参考訳(メタデータ) (2021-09-21T01:57:54Z) - Contact and Human Dynamics from Monocular Video [73.47466545178396]
既存のディープモデルは、ほぼ正確に見えるエラーを含むビデオから2Dと3Dキネマティックのポーズを予測する。
本稿では,最初の2次元と3次元のポーズ推定を入力として,映像系列から3次元の人間の動きを推定する物理に基づく手法を提案する。
論文 参考訳(メタデータ) (2020-07-22T21:09:11Z) - Use the Force, Luke! Learning to Predict Physical Forces by Simulating
Effects [79.351446087227]
物体と相互作用する人間の映像から接触点と物理的力の推測の問題に対処する。
具体的には、シミュレーションを用いて効果を予測し、推定された力がビデオに描かれたものと同じ効果をもたらすことを強制する。
論文 参考訳(メタデータ) (2020-03-26T17:20:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。