Me LLaMA: Foundation Large Language Models for Medical Applications
- URL: http://arxiv.org/abs/2402.12749v4
- Date: Thu, 11 Apr 2024 16:42:55 GMT
- Title: Me LLaMA: Foundation Large Language Models for Medical Applications
- Authors: Qianqian Xie, Qingyu Chen, Aokun Chen, Cheng Peng, Yan Hu, Fongci Lin, Xueqing Peng, Jimin Huang, Jeffrey Zhang, Vipina Keloth, Xinyu Zhou, Huan He, Lucila Ohno-Machado, Yonghui Wu, Hua Xu, Jiang Bian,
- Abstract summary: Me-LLaMA is a novel medical foundation model that uses both biomedical and clinical data.
Me-LLaMA models achieve better performance than existing open-source medical LLMs in zero-shot, few-shot and supervised learning abilities.
Me-LLaMA models outperform ChatGPT on 7 out of 8 datasets and GPT-4 on 5 out of 8 datasets.
- Score: 42.01236455049301
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent advancements in large language models (LLMs) such as ChatGPT and LLaMA have hinted at their potential to revolutionize medical applications, yet their application in clinical settings often reveals limitations due to a lack of specialized training on medical-specific data. In response to this challenge, this study introduces Me-LLaMA, a novel medical LLM family that includes foundation models - Me-LLaMA 13/70B, along with their chat-enhanced versions - Me-LLaMA 13/70B-chat, developed through continual pre-training and instruction tuning of LLaMA2 using large medical datasets. Our methodology leverages a comprehensive domain-specific data suite, including a large-scale, continual pre-training dataset with 129B tokens, an instruction tuning dataset with 214k samples, and a new medical evaluation benchmark (MIBE) across six critical medical tasks with 12 datasets. Our extensive evaluation using the MIBE shows that Me-LLaMA models achieve overall better performance than existing open-source medical LLMs in zero-shot, few-shot and supervised learning abilities. With task-specific instruction tuning, Me-LLaMA models outperform ChatGPT on 7 out of 8 datasets and GPT-4 on 5 out of 8 datasets. In addition, we investigated the catastrophic forgetting problem, and our results show that Me-LLaMA models outperform other open-source medical LLMs in mitigating this issue. Me-LLaMA is one of the largest open-source medical foundation LLMs that use both biomedical and clinical data. It exhibits superior performance across both general and medical tasks compared to other open-source medical LLMs, rendering it an attractive choice for medical AI applications. We release our models, datasets, and evaluation scripts at: https://github.com/BIDS-Xu-Lab/Me-LLaMA.
Related papers
- Performance of Large Language Models in Supporting Medical Diagnosis and Treatment [0.0]
AI-driven systems can analyze vast datasets, assisting clinicians in identifying diseases, recommending treatments, and predicting patient outcomes.
This study evaluates the performance of a range of contemporary LLMs, including both open-source and closed-source models, on the 2024 Portuguese National Exam for medical specialty access.
arXiv Detail & Related papers (2025-04-14T16:53:59Z) - A Comparative Study of Recent Large Language Models on Generating Hospital Discharge Summaries for Lung Cancer Patients [19.777109737517996]
This research aims to explore how large language models (LLMs) can alleviate the burden of manual summarization.
This study evaluates the performance of multiple LLMs, including GPT-3.5, GPT-4, GPT-4o, and LLaMA 3 8b, in generating discharge summaries.
arXiv Detail & Related papers (2024-11-06T10:02:50Z) - Towards Evaluating and Building Versatile Large Language Models for Medicine [57.49547766838095]
We present MedS-Bench, a benchmark designed to evaluate the performance of large language models (LLMs) in clinical contexts.
MedS-Bench spans 11 high-level clinical tasks, including clinical report summarization, treatment recommendations, diagnosis, named entity recognition, and medical concept explanation.
MedS-Ins comprises 58 medically oriented language corpora, totaling 13.5 million samples across 122 tasks.
arXiv Detail & Related papers (2024-08-22T17:01:34Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
Large Vision-Language Models (LVLMs) are capable of handling diverse data types such as imaging, text, and physiological signals.
GMAI-MMBench is the most comprehensive general medical AI benchmark with well-categorized data structure and multi-perceptual granularity to date.
It is constructed from 284 datasets across 38 medical image modalities, 18 clinical-related tasks, 18 departments, and 4 perceptual granularities in a Visual Question Answering (VQA) format.
arXiv Detail & Related papers (2024-08-06T17:59:21Z) - LLMs-in-the-loop Part-1: Expert Small AI Models for Bio-Medical Text Translation [0.0]
This study introduces a novel "LLMs-in-the-loop" approach to develop supervised neural machine translation models optimized for medical texts.
Custom parallel corpora in six languages were compiled from scientific articles, synthetically generated clinical documents, and medical texts.
Our MarianMT-based models outperform Google Translate, DeepL, and GPT-4-Turbo.
arXiv Detail & Related papers (2024-07-16T19:32:23Z) - Are Large Language Models True Healthcare Jacks-of-All-Trades? Benchmarking Across Health Professions Beyond Physician Exams [32.77551245372691]
Existing benchmarks for evaluating Large Language Models (LLMs) in healthcare predominantly focus on medical doctors.
We introduce the Examinations for Medical Personnel in Chinese (EMPEC), a pioneering large-scale healthcare knowledge benchmark in traditional Chinese.
EMPEC consists of 157,803 exam questions across 124 subjects and 20 healthcare professions, including underrepresented occupations like Optometrists and Audiologists.
arXiv Detail & Related papers (2024-06-17T08:40:36Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - MedAlign: A Clinician-Generated Dataset for Instruction Following with
Electronic Medical Records [60.35217378132709]
Large language models (LLMs) can follow natural language instructions with human-level fluency.
evaluating LLMs on realistic text generation tasks for healthcare remains challenging.
We introduce MedAlign, a benchmark dataset of 983 natural language instructions for EHR data.
arXiv Detail & Related papers (2023-08-27T12:24:39Z) - Benchmarking Large Language Models on CMExam -- A Comprehensive Chinese
Medical Exam Dataset [31.047827145874844]
We introduce CMExam, sourced from the Chinese National Medical Licensing Examination.
CMExam consists of 60K+ multiple-choice questions for standardized and objective evaluations, as well as solution explanations for model reasoning evaluation in an open-ended manner.
For in-depth analyses of LLMs, we invited medical professionals to label five additional question-wise annotations, including disease groups, clinical departments, medical disciplines, areas of competency, and question difficulty levels.
arXiv Detail & Related papers (2023-06-05T16:48:41Z) - PMC-LLaMA: Towards Building Open-source Language Models for Medicine [62.39105735933138]
Large Language Models (LLMs) have showcased remarkable capabilities in natural language understanding.
LLMs struggle in domains that require precision, such as medical applications, due to their lack of domain-specific knowledge.
We describe the procedure for building a powerful, open-source language model specifically designed for medicine applications, termed as PMC-LLaMA.
arXiv Detail & Related papers (2023-04-27T18:29:05Z) - Large Language Models Encode Clinical Knowledge [21.630872464930587]
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation.
We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias.
We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning.
arXiv Detail & Related papers (2022-12-26T14:28:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.