A Coverage-Guided Testing Framework for Quantum Neural Networks
- URL: http://arxiv.org/abs/2411.02450v1
- Date: Sun, 03 Nov 2024 08:07:27 GMT
- Title: A Coverage-Guided Testing Framework for Quantum Neural Networks
- Authors: Minqi Shao, Jianjun Zhao,
- Abstract summary: Quantum Neural Networks (QNNs) combine quantum computing and neural networks to improve machine learning models.
We propose QCov, a set of test coverage criteria specifically designed for QNNs to systematically evaluate QNN state exploration.
- Score: 1.7101498519540597
- License:
- Abstract: Quantum Neural Networks (QNNs) combine quantum computing and neural networks, leveraging quantum properties such as superposition and entanglement to improve machine learning models. These quantum characteristics enable QNNs to potentially outperform classical neural networks in tasks such as quantum chemistry simulations, optimization problems, and quantum-enhanced machine learning. However, they also introduce significant challenges in verifying the correctness and reliability of QNNs. To address this, we propose QCov, a set of test coverage criteria specifically designed for QNNs to systematically evaluate QNN state exploration during testing, focusing on superposition and entanglement. These criteria help detect quantum-specific defects and anomalies. Extensive experiments on benchmark datasets and QNN models validate QCov's effectiveness in identifying quantum-specific defects and guiding fuzz testing, thereby improving QNN robustness and reliability.
Related papers
- QuanTest: Entanglement-Guided Testing of Quantum Neural Network Systems [45.18451374144537]
Quantum Neural Network (QNN) combines the Deep Learning (DL) principle with the fundamental theory of quantum mechanics to achieve machine learning tasks with quantum acceleration.
QNN systems differ significantly from traditional quantum software and classical DL systems, posing critical challenges for QNN testing.
We propose QuanTest, a quantum entanglement-guided adversarial testing framework to uncover potential erroneous behaviors in QNN systems.
arXiv Detail & Related papers (2024-02-20T12:11:28Z) - Splitting and Parallelizing of Quantum Convolutional Neural Networks for
Learning Translationally Symmetric Data [0.0]
We propose a novel architecture called split-parallelizing QCNN (sp-QCNN)
By splitting the quantum circuit based on translational symmetry, the sp-QCNN can substantially parallelize the conventional QCNN without increasing the number of qubits.
We show that the sp-QCNN can achieve comparable classification accuracy to the conventional QCNN while considerably reducing the measurement resources required.
arXiv Detail & Related papers (2023-06-12T18:00:08Z) - ResQNets: A Residual Approach for Mitigating Barren Plateaus in Quantum
Neural Networks [0.0]
The barren plateau problem in quantum neural networks (QNNs) is a significant challenge that hinders the practical success of QNNs.
In this paper, we introduce residual quantum neural networks (ResQNets) as a solution to address this problem.
arXiv Detail & Related papers (2023-05-05T13:33:43Z) - Variational Quantum Neural Networks (VQNNS) in Image Classification [0.0]
This paper investigates how training of quantum neural network (QNNs) can be done using quantum optimization algorithms.
In this paper, a QNN structure is made where a variational parameterized circuit is incorporated as an input layer named as Variational Quantum Neural Network (VQNNs)
VQNNs is experimented with MNIST digit recognition (less complex) and crack image classification datasets which converge the computation in lesser time than QNN with decent training accuracy.
arXiv Detail & Related papers (2023-03-10T11:24:32Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Scalable Quantum Convolutional Neural Networks [12.261689483681145]
We propose a new version of quantum neural network (QCNN) named scalable quantum convolutional neural network (sQCNN)
In addition, using the fidelity of QC, we propose an sQCNN training algorithm named reverse fidelity training (RF-Train) that maximizes the performance of sQCNN.
arXiv Detail & Related papers (2022-09-26T02:07:00Z) - On Circuit-based Hybrid Quantum Neural Networks for Remote Sensing
Imagery Classification [88.31717434938338]
The hybrid QCNNs enrich the classical architecture of CNNs by introducing a quantum layer within a standard neural network.
The novel QCNN proposed in this work is applied to the Land Use and Land Cover (LULC) classification, chosen as an Earth Observation (EO) use case.
The results of the multiclass classification prove the effectiveness of the presented approach, by demonstrating that the QCNN performances are higher than the classical counterparts.
arXiv Detail & Related papers (2021-09-20T12:41:50Z) - The dilemma of quantum neural networks [63.82713636522488]
We show that quantum neural networks (QNNs) fail to provide any benefit over classical learning models.
QNNs suffer from the severely limited effective model capacity, which incurs poor generalization on real-world datasets.
These results force us to rethink the role of current QNNs and to design novel protocols for solving real-world problems with quantum advantages.
arXiv Detail & Related papers (2021-06-09T10:41:47Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) have been proposed as generalizations of classical neural networks to achieve the quantum speed-up.
Serious bottlenecks exist for training QNNs due to the vanishing with gradient rate exponential to the input qubit number.
We show that QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.
arXiv Detail & Related papers (2020-11-12T08:32:04Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.