Global Tropical Cyclone Intensity Forecasting with Multi-modal
Multi-scale Causal Autoregressive Model
- URL: http://arxiv.org/abs/2402.13270v1
- Date: Fri, 16 Feb 2024 15:26:33 GMT
- Title: Global Tropical Cyclone Intensity Forecasting with Multi-modal
Multi-scale Causal Autoregressive Model
- Authors: Xinyu Wang, Kang Chen, Lei Liu, Tao Han, Bin Li, Lei Bai
- Abstract summary: We propose a Multi-modal, multi-Scale Causal Autogressive model (MSCAR) for global Tropical Cyclone intensity autoregressive forecasting.
MSCAR combines causal relationships with large-scale multi-temporal data for global TC intensity autoregressive forecasting.
We present the Satellite and ERA5-based Tropical Cyclone dataset (SETCD), which stands as the longest and most comprehensive global dataset related to variables.
- Score: 22.715152977444742
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate forecasting of Tropical cyclone (TC) intensity is crucial for
formulating disaster risk reduction strategies. Current methods predominantly
rely on limited spatiotemporal information from ERA5 data and neglect the
causal relationships between these physical variables, failing to fully capture
the spatial and temporal patterns required for intensity forecasting. To
address this issue, we propose a Multi-modal multi-Scale Causal AutoRegressive
model (MSCAR), which is the first model that combines causal relationships with
large-scale multi-modal data for global TC intensity autoregressive
forecasting. Furthermore, given the current absence of a TC dataset that offers
a wide range of spatial variables, we present the Satellite and ERA5-based
Tropical Cyclone Dataset (SETCD), which stands as the longest and most
comprehensive global dataset related to TCs. Experiments on the dataset show
that MSCAR outperforms the state-of-the-art methods, achieving maximum
reductions in global and regional forecast errors of 9.52% and 6.74%,
respectively. The code and dataset are publicly available at
https://anonymous.4open.science/r/MSCAR.
Related papers
- Deep Learning for Weather Forecasting: A CNN-LSTM Hybrid Model for Predicting Historical Temperature Data [7.559331742876793]
This study introduces a hybrid model combining Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks to predict historical temperature data.
CNNs are utilized for spatial feature extraction, while LSTMs handle temporal dependencies, resulting in significantly improved prediction accuracy and stability.
arXiv Detail & Related papers (2024-10-19T03:38:53Z) - TCP-Diffusion: A Multi-modal Diffusion Model for Global Tropical Cyclone Precipitation Forecasting with Change Awareness [13.696784449863959]
Tropical Cyclone Precipitation Diffusion ( TCP-Diffusion) is a multi-modal model for global tropical cyclone precipitation forecasting.
It forecasts TC rainfall around the TC center for the next 12 hours at 3 hourly resolution based on past rainfall observations and multi-modal environmental variables.
Considering the influence of TC-related meteorological factors and the useful information from NWP model forecasts, we propose a multi-model framework with specialized encoders.
arXiv Detail & Related papers (2024-10-17T02:58:05Z) - Masked Autoregressive Model for Weather Forecasting [7.960598061739508]
Masked Autoregressive Model for Weather Forecasting (MAM4WF)
We propose the Masked Autoregressive Model for Weather Forecasting (MAM4WF).
This model leverages masked modeling, where portions of input data are masked during training.
We evaluate MAM4WF across weather, climate forecasting, and video frame prediction datasets, demonstrating superior performance on five test datasets.
arXiv Detail & Related papers (2024-09-30T09:17:04Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Advancing Data-driven Weather Forecasting: Time-Sliding Data
Augmentation of ERA5 [3.3748750222488657]
We introduce a novel strategy that deviates from the common dependence on high-resolution data.
This paper improves on conventional approaches by adding more variables and a novel approach to data augmentation and processing.
Our findings reveal that despite the lower resolution, the proposed approach demonstrates considerable accuracy in predicting atmospheric conditions.
arXiv Detail & Related papers (2024-02-13T03:01:22Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
Earth system models (ESMs) are often used to generate future projections of climate change scenarios.
As a compromise, emulators are substantially less expensive but may not have all of the complexity of an ESM.
Here we demonstrate the use of a conditional generative adversarial network (GAN) to act as an ESM emulator.
arXiv Detail & Related papers (2020-11-23T20:13:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.