論文の概要: When LLMs Meets Acoustic Landmarks: An Efficient Approach to Integrate Speech into Large Language Models for Depression Detection
- arxiv url: http://arxiv.org/abs/2402.13276v2
- Date: Mon, 23 Sep 2024 22:54:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 04:32:42.392402
- Title: When LLMs Meets Acoustic Landmarks: An Efficient Approach to Integrate Speech into Large Language Models for Depression Detection
- Title(参考訳): LLMsがアコースティックランドマークと出会う時:抑うつ検出のための大規模言語モデルへの音声統合のための効率的なアプローチ
- Authors: Xiangyu Zhang, Hexin Liu, Kaishuai Xu, Qiquan Zhang, Daijiao Liu, Beena Ahmed, Julien Epps,
- Abstract要約: 抑うつは世界的メンタルヘルスにおいて重要な関心事であり、AIに基づく検出方法の広範な研究を促している。
大規模言語モデル(LLM)は、メンタルヘルスケアアプリケーションにおいて、その汎用性において際立っている。
マルチモーダル抑うつ検出のためのLLMフレームワークに音声情報を統合するための革新的なアプローチを提案する。
- 参考スコア(独自算出の注目度): 17.018248242646365
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Depression is a critical concern in global mental health, prompting extensive research into AI-based detection methods. Among various AI technologies, Large Language Models (LLMs) stand out for their versatility in mental healthcare applications. However, their primary limitation arises from their exclusive dependence on textual input, which constrains their overall capabilities. Furthermore, the utilization of LLMs in identifying and analyzing depressive states is still relatively untapped. In this paper, we present an innovative approach to integrating acoustic speech information into the LLMs framework for multimodal depression detection. We investigate an efficient method for depression detection by integrating speech signals into LLMs utilizing Acoustic Landmarks. By incorporating acoustic landmarks, which are specific to the pronunciation of spoken words, our method adds critical dimensions to text transcripts. This integration also provides insights into the unique speech patterns of individuals, revealing the potential mental states of individuals. Evaluations of the proposed approach on the DAIC-WOZ dataset reveal state-of-the-art results when compared with existing Audio-Text baselines. In addition, this approach is not only valuable for the detection of depression but also represents a new perspective in enhancing the ability of LLMs to comprehend and process speech signals.
- Abstract(参考訳): 抑うつは世界的メンタルヘルスにおいて重要な関心事であり、AIに基づく検出方法の広範な研究を促している。
さまざまなAI技術の中で、Large Language Models(LLM)は、メンタルヘルスケアアプリケーションにおける汎用性において際立っている。
しかし、それらの主な制限は、テキスト入力への排他的依存から生じ、それによって全体的な能力が制限される。
さらに, うつ状態の同定と解析におけるLDMの利用は, いまだに未発達である。
本稿では,マルチモーダル抑うつ検出のためのLLMフレームワークに音声情報を統合するための革新的なアプローチを提案する。
音響ランドマークを用いたLLMへの音声信号の統合による抑うつ検出の効率的な手法について検討する。
本手法は,音声の発音に特有なアコースティックなランドマークを組み込むことで,テキストの書き起こしに重要な次元を付加する。
この統合はまた、個人のユニークな音声パターンに関する洞察を与え、個人の潜在的な精神状態を明らかにする。
DAIC-WOZデータセットに対する提案手法の評価により,既存のAudio-Textベースラインと比較して,最先端の結果が得られた。
また,この手法は抑うつの検出に有用であるだけでなく,LLMの音声信号の理解・処理能力の向上にも有用である。
関連論文リスト
- Roadmap towards Superhuman Speech Understanding using Large Language Models [60.57947401837938]
大規模言語モデル(LLM)は、音声データと音声データを統合したものである。
GPT-4oのような最近の進歩は、エンドツーエンドのLLMの可能性を強調している。
本稿では,基本自動音声認識(ASR)から高度な超人モデルまで,5段階のロードマップを提案する。
論文 参考訳(メタデータ) (2024-10-17T06:44:06Z) - Language-Agnostic Analysis of Speech Depression Detection [2.5764071253486636]
本研究は、英語とマラヤラムの2言語間での自動抑うつ検出を解析する。
CNNモデルは、両言語に焦点をあてて、抑うつに関連する音響的特徴を特定するために訓練される。
その結果,言語に依存しない抑うつ検出システムの開発に寄与する可能性が示唆された。
論文 参考訳(メタデータ) (2024-09-23T07:35:56Z) - Human Speech Perception in Noise: Can Large Language Models Paraphrase to Improve It? [26.835947209927273]
LLM(Large Language Models)は、形式性などのスタイル属性を変換することで、形式的あるいは非公式なテキストを生成することができる。
本研究は,騒音における人間の発話知覚を改善するために,音響的に理解可能なパラフレーズを生成する新しいタスクにおいて,LLMを評価するための最初の研究である。
提案手法は,バブルノイズを伴う聴取条件において,信号-雑音比(SNR)-5dBで高い歪みを呈する発話を言い換えることにより,人間の音声知覚の40%の相対的な改善をもたらした。
論文 参考訳(メタデータ) (2024-08-07T18:24:23Z) - Can LLMs Understand the Implication of Emphasized Sentences in Dialogue? [64.72966061510375]
強調は人間のコミュニケーションにおいて重要な要素であり、対話における純粋テキストを超えて話者の意図と含意を示す。
本稿では,強調の意味を抽出した強調注釈付き対話サンプルを用いたベンチマークであるEmphasized-Talkを紹介する。
オープンソースと商用の両方で様々な大規模言語モデル(LLM)を評価し,その性能を重要視して評価する。
論文 参考訳(メタデータ) (2024-06-16T20:41:44Z) - Speech-based Clinical Depression Screening: An Empirical Study [32.84863235794086]
本研究では,AIを用いた抑うつスクリーニングにおける音声信号の有用性について検討した。
参加者には、北京大学第6病院の外来から採用されているうつ病患者が含まれる。
音声と深部音声の特徴を各参加者の分節録音から抽出した。
論文 参考訳(メタデータ) (2024-06-05T09:43:54Z) - It's Never Too Late: Fusing Acoustic Information into Large Language
Models for Automatic Speech Recognition [70.77292069313154]
大規模言語モデル(LLM)は、自動音声認識(ASR)出力の上の生成誤り訂正(GER)に成功することができる。
本研究では,不確実性認識ダイナミックフュージョン (UADF) と呼ばれる新しい遅延融合解によって予測された転写を生成する前に,音響情報を注入することにより,そのような制限を克服することを目的とする。
論文 参考訳(メタデータ) (2024-02-08T07:21:45Z) - Identification of Cognitive Decline from Spoken Language through Feature
Selection and the Bag of Acoustic Words Model [0.0]
記憶障害の症状の早期発見は、集団の健康確保に重要な役割を担っている。
臨床環境における標準化された音声テストの欠如は、自然音声言語を解析するための自動機械学習技術の開発にますます重点を置いている。
この研究は特徴選択に関するアプローチを示し、ジュネーブの最小音響パラメータセットと相対音声停止から診断に必要な重要な特徴を自動的に選択することを可能にする。
論文 参考訳(メタデータ) (2024-02-02T17:06:03Z) - Enhancing Uncertainty-Based Hallucination Detection with Stronger Focus [99.33091772494751]
大規模言語モデル(LLM)は、様々な分野にわたる印象的なパフォーマンスで大きな人気を集めている。
LLMは、ユーザの期待を満たさない非現実的あるいは非感覚的なアウトプットを幻覚させる傾向がある。
LLMにおける幻覚を検出するための新しい基準のない不確実性に基づく手法を提案する。
論文 参考訳(メタデータ) (2023-11-22T08:39:17Z) - DEPAC: a Corpus for Depression and Anxiety Detection from Speech [3.2154432166999465]
本稿では、うつ病と不安スクリーニングツールの確立したしきい値に基づいてラベル付けされた、心的苦痛分析オーディオデータセットDEPACを紹介する。
この大きなデータセットは、個人ごとの複数の音声タスクと、関連する人口統計情報から構成される。
人間の音声における精神疾患の徴候の同定に有効な,手作業による音響的特徴と言語的特徴からなる特徴セットを提案する。
論文 参考訳(メタデータ) (2023-06-20T12:21:06Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - An Overview of Deep-Learning-Based Audio-Visual Speech Enhancement and
Separation [57.68765353264689]
音声強調と音声分離は関連する2つの課題である。
伝統的に、これらのタスクは信号処理と機械学習技術を使って取り組まれてきた。
ディープラーニングは強力なパフォーマンスを達成するために利用されています。
論文 参考訳(メタデータ) (2020-08-21T17:24:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。