論文の概要: Deep Hedging with Market Impact
- arxiv url: http://arxiv.org/abs/2402.13326v2
- Date: Thu, 22 Feb 2024 21:25:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-26 16:59:09.933567
- Title: Deep Hedging with Market Impact
- Title(参考訳): マーケットインパクトによるディープヘッジ
- Authors: Andrei Neagu and Fr\'ed\'eric Godin and Clarence Simard and Leila
Kosseim
- Abstract要約: 本稿では,Deep Reinforcement Learning(DRL)に基づく新しい市場インパクト動的ヘッジモデルを提案する。
DRLモデルから得られた最適ポリシーは、いくつかのオプションヘッジシミュレーションを用いて分析され、デルタヘッジのような一般的な手順と比較される。
- 参考スコア(独自算出の注目度): 0.20482269513546458
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dynamic hedging is the practice of periodically transacting financial
instruments to offset the risk caused by an investment or a liability. Dynamic
hedging optimization can be framed as a sequential decision problem; thus,
Reinforcement Learning (RL) models were recently proposed to tackle this task.
However, existing RL works for hedging do not consider market impact caused by
the finite liquidity of traded instruments. Integrating such feature can be
crucial to achieve optimal performance when hedging options on stocks with
limited liquidity. In this paper, we propose a novel general market impact
dynamic hedging model based on Deep Reinforcement Learning (DRL) that considers
several realistic features such as convex market impacts, and impact
persistence through time. The optimal policy obtained from the DRL model is
analysed using several option hedging simulations and compared to commonly used
procedures such as delta hedging. Results show our DRL model behaves better in
contexts of low liquidity by, among others: 1) learning the extent to which
portfolio rebalancing actions should be dampened or delayed to avoid high
costs, 2) factoring in the impact of features not considered by conventional
approaches, such as previous hedging errors through the portfolio value, and
the underlying asset's drift (i.e. the magnitude of its expected return).
- Abstract(参考訳): 動的ヘッジ(dynamic hedging)とは、金融商品を定期的に取引し、投資や負債によるリスクを相殺する行為である。
動的ヘッジ最適化は逐次決定問題であり,近年,この課題に対処するための強化学習(RL)モデルが提案されている。
しかし、既存のヘッジ用RLは、取引された機器の有限流動性に起因する市場への影響を考慮していない。
このような機能を統合することは、流動性の制限された株式のオプションをヘッジするときに最適な性能を達成するのに不可欠である。
本稿では,コンベックス市場の影響や時間的持続性など,いくつかの現実的な特徴を考察した,Deep Reinforcement Learning(DRL)に基づく新しい市場インパクト動的ヘッジモデルを提案する。
DRLモデルから得られた最適ポリシーは、いくつかのオプションヘッジシミュレーションを用いて分析され、デルタヘッジのような一般的な手順と比較される。
その結果、DRLモデルは流動性の低い文脈でより良く振る舞うことがわかった。
1)高コストを回避するため、ポートフォリオ再バランス行動の緩和又は遅延の程度を学習すること。
2)従来のアプローチでは考慮されていない機能の影響の要因として,ポートフォリオ価値を通じた以前のエラーのヘッジや,基盤となる資産のドリフト(すなわち期待値の大きさ)が挙げられる。
関連論文リスト
- Optimizing Portfolio with Two-Sided Transactions and Lending: A Reinforcement Learning Framework [0.0]
本研究では,リスクの高い環境に適した強化学習に基づくポートフォリオ管理モデルを提案する。
マルチヘッドアテンションを持つ畳み込みニューラルネットワークを用いたソフトアクタ・クリティカル(SAC)エージェントを用いてモデルを実装した。
市場のボラティリティ(変動性)が変化する2つの16カ月間にわたってテストされたこのモデルは、ベンチマークを著しく上回った。
論文 参考訳(メタデータ) (2024-08-09T23:36:58Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
LLMによって駆動される、StockAgentと呼ばれるマルチエージェントAIシステムを開発した。
StockAgentを使えば、ユーザーはさまざまな外部要因が投資家取引に与える影響を評価することができる。
AIエージェントに基づく既存のトレーディングシミュレーションシステムに存在するテストセットのリーク問題を回避する。
論文 参考訳(メタデータ) (2024-07-15T06:49:30Z) - Application of Deep Learning for Factor Timing in Asset Management [21.212548040046133]
より柔軟なモデルは、目に見えない期間の係数プレミアムのばらつきを説明するのにより良いパフォーマンスを持つ。
ニューラルネットワークのような柔軟なモデルでは、予測に基づく最適な重み付けは不安定である傾向がある。
我々は、過去の最適再バランス方式によるリバランス頻度の傾きが、取引コストの削減に役立つことを検証した。
論文 参考訳(メタデータ) (2024-04-27T21:57:17Z) - Optimizing Portfolio Management and Risk Assessment in Digital Assets
Using Deep Learning for Predictive Analysis [5.015409508372732]
本稿では,DQNアルゴリズムを新規かつ簡単な方法で資産管理ポートフォリオに導入する。
この性能はベンチマークをはるかに上回り、ポートフォリオ管理におけるDRLアルゴリズムの有効性を十分に証明している。
異なる資産は別々に環境として訓練されるので、異なる資産間でQ値が漂う現象があるかもしれない。
論文 参考訳(メタデータ) (2024-02-25T05:23:57Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
本稿では,実世界の配水ネットワーク(WDN)のリアルタイム制御を強化するために,ポンプスケジューリング最適化問題に対処する。
我々の主な目的は、エネルギー消費と運用コストを削減しつつ、物理的な運用上の制約を遵守することである。
進化に基づくアルゴリズムや遺伝的アルゴリズムのような伝統的な最適化手法は、収束保証の欠如によってしばしば不足する。
論文 参考訳(メタデータ) (2023-10-13T21:26:16Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
オンラインで適応的な環境で株価予測を行うファクターモデルを構築することは、依然としてオープンな疑問である。
本稿では,オンラインおよび適応型要素モデルであるHireVAEを,市場状況とストックワイド潜在要因の関係を埋め込んだ階層型潜在空間として提案する。
4つの一般的な実市場ベンチマークにおいて、提案されたHireVAEは、以前の手法よりもアクティブリターンの点で優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-06-05T12:58:13Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
我々は、業界中立化と市場中立化モジュールを明確な財務見識をもって取り入れた、新しい深層多要素モデルを開発する。
実世界の株式市場データによるテストは、我々の深層多要素モデルの有効性を示している。
論文 参考訳(メタデータ) (2022-10-22T14:47:11Z) - Deep Reinforcement Learning Approach for Trading Automation in The Stock
Market [0.0]
本稿では,Deep Reinforcement Learning (DRL)アルゴリズムを用いて,株式市場における収益性取引を生成するモデルを提案する。
我々は、市場が課す制約を考慮して、部分的に観測されたマルコフ決定プロセス(POMDP)モデルとして取引問題を定式化する。
次に, Twin Delayed Deep Deterministic Policy Gradient (TD3) アルゴリズムを用いて, 2.68 Sharpe Ratio を未知のデータセットに報告し, 定式化した POMDP 問題を解く。
論文 参考訳(メタデータ) (2022-07-05T11:34:29Z) - Deep Reinforcement Learning and Convex Mean-Variance Optimisation for
Portfolio Management [0.0]
強化学習(RL)法は明示的な予測に頼らず、多段階決定プロセスに適している。
総合的な傾向の異なる経済の3つの市場で実験が行われた。
論文 参考訳(メタデータ) (2022-02-13T10:12:09Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
ポートフォリオマネジメント(PM)は、最大利益や最小リスクといった投資目標を達成することを目的としている。
本稿では,PMのための新しいステート拡張RLフレームワークであるSARLを提案する。
当社の枠組みは, 金融PMにおける2つのユニークな課題に対処することを目的としている。(1) データの異種データ -- 資産毎の収集情報は通常, 多様性, ノイズ, 不均衡(ニュース記事など), (2) 環境の不確実性 -- 金融市場は多様で非定常である。
論文 参考訳(メタデータ) (2020-02-09T08:10:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。