ADformer: A Multi-Granularity Transformer for EEG-Based Alzheimer's Disease Assessment
- URL: http://arxiv.org/abs/2409.00032v1
- Date: Sat, 17 Aug 2024 14:10:41 GMT
- Title: ADformer: A Multi-Granularity Transformer for EEG-Based Alzheimer's Disease Assessment
- Authors: Yihe Wang, Nadia Mammone, Darina Petrovsky, Alexandros T. Tzallas, Francesco C. Morabito, Xiang Zhang,
- Abstract summary: We present ADformer, a novel multi-granularity transformer designed to capture temporal and spatial features to learn effective EEG representations.
We conduct experiments across 5 datasets with a total of 525 subjects in setups including subject-dependent, subject-independent, and leave-subjects-out.
Our results show that ADformer outperforms existing methods in most evaluations.
- Score: 42.72554952799386
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electroencephalogram (EEG) has emerged as a cost-effective and efficient method for supporting neurologists in assessing Alzheimer's disease (AD). Existing approaches predominantly utilize handcrafted features or Convolutional Neural Network (CNN)-based methods. However, the potential of the transformer architecture, which has shown promising results in various time series analysis tasks, remains underexplored in interpreting EEG for AD assessment. Furthermore, most studies are evaluated on the subject-dependent setup but often overlook the significance of the subject-independent setup. To address these gaps, we present ADformer, a novel multi-granularity transformer designed to capture temporal and spatial features to learn effective EEG representations. We employ multi-granularity data embedding across both dimensions and utilize self-attention to learn local features within each granularity and global features among different granularities. We conduct experiments across 5 datasets with a total of 525 subjects in setups including subject-dependent, subject-independent, and leave-subjects-out. Our results show that ADformer outperforms existing methods in most evaluations, achieving F1 scores of 75.19% and 93.58% on two large datasets with 65 subjects and 126 subjects, respectively, in distinguishing AD and healthy control (HC) subjects under the challenging subject-independent setup.
Related papers
- LEAD: Large Foundation Model for EEG-Based Alzheimer's Disease Detection [4.935843202928883]
We propose LEAD, the first large foundation model for EEG-based Alzheimer's Disease detection.
We pre-train the model on 11 EEG datasets and unified fine-tune it on 5 AD datasets.
Our method demonstrates outstanding AD detection performance, achieving up to a 9.86% increase in F1 score at the sample-level and up to a 9.31% at the subject-level.
arXiv Detail & Related papers (2025-02-02T04:19:35Z) - MVICAD2: Multi-View Independent Component Analysis with Delays and Dilations [61.59658203704757]
We propose Multi-View Independent Component Analysis with Delays and Dilations (MVICAD2), which allows sources to differ across subjects in both temporal delays and dilations.
We present a model with identifiable sources, derive an approximation of its likelihood in closed form, and use regularization and optimization techniques to enhance performance.
arXiv Detail & Related papers (2025-01-13T15:47:02Z) - Quantity versus Diversity: Influence of Data on Detecting EEG Pathology with Advanced ML Models [0.0]
This study investigates the impact of quantity and diversity of data on the performance of various machine-learning models for detecting general EEG pathology.
We utilize an EEG dataset of 2,993 recordings from Temple University Hospital and a dataset of 55,787 recordings from Elmiko Biosignals sp. z o.o.
Our findings show that small and consistent datasets enable a wide range of models to achieve high accuracy; however, variations in pathological conditions, recording protocols, and labeling standards lead to significant performance degradation.
arXiv Detail & Related papers (2024-11-13T16:15:48Z) - Geodesic Optimization for Predictive Shift Adaptation on EEG data [53.58711912565724]
Domain adaptation methods struggle when distribution shifts occur simultaneously in $X$ and $y$.
This paper proposes a novel method termed Geodesic Optimization for Predictive Shift Adaptation (GOPSA) to address test-time multi-source DA.
GOPSA has the potential to combine the advantages of mixed-effects modeling with machine learning for biomedical applications of EEG.
arXiv Detail & Related papers (2024-07-04T12:15:42Z) - Topological Feature Search Method for Multichannel EEG: Application in ADHD classification [13.381770446807016]
Topological Data Analysis offers a novel perspective for ADHD classification.
This paper presents an enhanced TDA approach applicable to multi-channel EEG in ADHD.
Results demonstrate that the accuracy, sensitivity, and specificity reach 78.27%, 80.62%, and 75.63%, respectively.
arXiv Detail & Related papers (2024-04-10T01:37:41Z) - OCT-SelfNet: A Self-Supervised Framework with Multi-Modal Datasets for
Generalized and Robust Retinal Disease Detection [2.3349787245442966]
Our research contributes a self-supervised robust machine learning framework, OCT-SelfNet, for detecting eye diseases.
Our method addresses the issue using a two-phase training approach that combines self-supervised pretraining and supervised fine-tuning.
In terms of the AUC-PR metric, our proposed method exceeded 42%, showcasing a substantial increase of at least 10% in performance compared to the baseline.
arXiv Detail & Related papers (2024-01-22T20:17:14Z) - Diagnosing Alzheimer's Disease using Early-Late Multimodal Data Fusion
with Jacobian Maps [1.5501208213584152]
Alzheimer's disease (AD) is a prevalent and debilitating neurodegenerative disorder impacting a large aging population.
We propose an efficient early-late fusion (ELF) approach, which leverages a convolutional neural network for automated feature extraction and random forests.
To tackle the challenge of detecting subtle changes in brain volume, we transform images into the Jacobian domain (JD)
arXiv Detail & Related papers (2023-10-25T19:02:57Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.