Voice-Driven Mortality Prediction in Hospitalized Heart Failure Patients: A Machine Learning Approach Enhanced with Diagnostic Biomarkers
- URL: http://arxiv.org/abs/2402.13812v2
- Date: Wed, 14 Aug 2024 18:55:22 GMT
- Title: Voice-Driven Mortality Prediction in Hospitalized Heart Failure Patients: A Machine Learning Approach Enhanced with Diagnostic Biomarkers
- Authors: Nihat Ahmadli, Mehmet Ali Sarsil, Berk Mizrak, Kurtulus Karauzum, Ata Shaker, Erol Tulumen, Didar Mirzamidinov, Dilek Ural, Onur Ergen,
- Abstract summary: We demonstrate a powerful and effective Machine Learning model for predicting mortality rates in heart failure patients.
By integrating voice biomarkers into routine patient monitoring, this strategy has the potential to improve patient outcomes.
In this study, a Machine Learning system is trained to predict patients' 5-year mortality rates using their speech as input.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Addressing heart failure (HF) as a prevalent global health concern poses difficulties in implementing innovative approaches for enhanced patient care. Predicting mortality rates in HF patients, in particular, is difficult yet critical, necessitating individualized care, proactive management, and enabling educated decision-making to enhance outcomes. Recently, the significance of voice biomarkers coupled with Machine Learning (ML) has surged, demonstrating remarkable efficacy, particularly in predicting heart failure. The synergy of voice analysis and ML algorithms provides a non-invasive and easily accessible means to evaluate patients' health. However, there is a lack of voice biomarkers for predicting mortality rates among heart failure patients with standardized speech protocols. Here, we demonstrate a powerful and effective ML model for predicting mortality rates in hospitalized HF patients through the utilization of voice biomarkers. By seamlessly integrating voice biomarkers into routine patient monitoring, this strategy has the potential to improve patient outcomes, optimize resource allocation, and advance patient-centered HF management. In this study, a Machine Learning system, specifically a logistic regression model, is trained to predict patients' 5-year mortality rates using their speech as input. The model performs admirably and consistently, as demonstrated by cross-validation and statistical approaches (p-value < 0.001). Furthermore, integrating NT-proBNP, a diagnostic biomarker in HF, improves the model's predictive accuracy substantially.
Related papers
- Advancements In Heart Disease Prediction: A Machine Learning Approach For Early Detection And Risk Assessment [0.0]
This paper comprehends, assess, and analyze the role, relevance, and efficiency of machine learning models in predicting heart disease risks using clinical data.
The Support Vector Machine (SVM) demonstrates the highest accuracy at 91.51%, confirming its superiority among the evaluated models in terms of predictive capability.
arXiv Detail & Related papers (2024-10-16T22:32:19Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - Deciphering Cardiac Destiny: Unveiling Future Risks Through Cutting-Edge Machine Learning Approaches [0.0]
This project aims to develop and assess predictive models for the timely identification of cardiac arrest incidents.
We employ machine learning algorithms like XGBoost, Gradient Boosting, and Naive Bayes, alongside a deep learning (DL) approach with Recurrent Neural Networks (RNNs)
Rigorous experimentation and validation revealed the superior performance of the RNN model.
arXiv Detail & Related papers (2024-09-03T19:18:16Z) - Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
We propose a novel text-guided learning method to achieve highly accurate cancer detection results.
Our approach can leverage clinical knowledge by large-scale pre-trained VLM to enhance generalization ability.
arXiv Detail & Related papers (2024-05-23T07:03:38Z) - Automatic prediction of mortality in patients with mental illness using
electronic health records [0.5957022371135096]
This paper addresses the persistent challenge of predicting mortality in patients with mental diagnoses.
Data from patients with mental disease diagnoses were extracted from the well-known clinical MIMIC-III data set.
Four machine learning algorithms were used, with results indicating that Random Forest and Support Vector Machine models outperformed others.
arXiv Detail & Related papers (2023-10-18T17:21:01Z) - Enhancing Mortality Prediction in Heart Failure Patients: Exploring
Preprocessing Methods for Imbalanced Clinical Datasets [0.0]
Heart failure (HF) is a critical condition in which the accurate prediction of mortality plays a vital role in guiding patient management decisions.
We present a comprehensive preprocessing framework including scaling, outliers processing and resampling.
By leveraging appropriate preprocessing techniques and Machine Learning (ML) algorithms, we aim to improve mortality prediction performance for HF patients.
arXiv Detail & Related papers (2023-09-30T18:31:15Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
Machine learning holds great promise for improving healthcare, but it is critical to ensure that its use will not propagate or amplify health disparities.
One potential driver of algorithmic unfairness, shortcut learning, arises when ML models base predictions on improper correlations in the training data.
Using multi-task learning, we propose the first method to assess and mitigate shortcut learning as a part of the fairness assessment of clinical ML systems.
arXiv Detail & Related papers (2022-07-21T09:35:38Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
We propose a new method that uses medical text of Electronic Health Records for prediction.
We represent discharge summaries of patients with multiview graphs enhanced by an external knowledge graph.
Experimental results prove the effectiveness of our method, yielding state-of-the-art performance.
arXiv Detail & Related papers (2021-12-19T01:45:57Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - ISeeU2: Visually Interpretable ICU mortality prediction using deep
learning and free-text medical notes [0.0]
We show a Deep Learning model trained on MIMIC-III to predict mortality using raw nursing notes, together with visual explanations for word importance.
Our model reaches a ROC of 0.8629, outperforming the traditional SAPS-II score and providing enhanced interpretability when compared with similar Deep Learning approaches.
arXiv Detail & Related papers (2020-05-19T08:30:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.