論文の概要: Neural Control System for Continuous Glucose Monitoring and Maintenance
- arxiv url: http://arxiv.org/abs/2402.13852v1
- Date: Wed, 21 Feb 2024 14:56:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-22 14:52:15.315888
- Title: Neural Control System for Continuous Glucose Monitoring and Maintenance
- Title(参考訳): 連続グルコースモニタリングとメンテナンスのためのニューラルコントロールシステム
- Authors: Azmine Toushik Wasi
- Abstract要約: 本稿では,持続的なグルコースモニタリングと維持のためのニューラルコントロールシステムを提案する。
本システムでは,インスリンのリアルタイム配信を動的に調整し,グルコースの最適化を向上する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Precise glucose level management is pivotal for individuals with diabetes,
averting severe complications. In this work, we introduce a novel neural
control system for continuous glucose monitoring and maintenance, utilizing
differential predictive control. Our system, guided by a sophisticated neural
policy and differentiable modeling, dynamically adjusts insulin delivery in
real-time, enhancing glucose optimization. This end-to-end approach maximizes
efficiency, ensuring personalized care and improved health outcomes, as
affirmed by empirical findings.
- Abstract(参考訳): 糖尿病患者にとってグルコースの正確な管理は重要であり、重篤な合併症を回避している。
本研究では, 差分予測制御を利用して, 連続グルコースモニタリングと保守を行うニューラルコントロールシステムを提案する。
本システムは,高度な神経政策と微分可能なモデリングによって誘導され,インスリン分泌をリアルタイムで動的に調節し,グルコースの最適化を促進する。
このエンドツーエンドのアプローチは効率を最大化し、パーソナライズされたケアと健康結果の改善を保証します。
関連論文リスト
- Hybrid Attention Model Using Feature Decomposition and Knowledge Distillation for Glucose Forecasting [6.466206145151128]
GlucoNetは、行動と生理の健康を継続的に監視するAI駆動のセンサーシステムである。
本稿では,患者の行動・生理的データを組み込んだ分解型トランスフォーマーモデルを提案する。
GGlucoNetは、T1-Diabetesの12人を含むデータを用いて、RMSEの60%の改善とパラメータ数の21%削減を実現している。
論文 参考訳(メタデータ) (2024-11-16T05:09:20Z) - GlucoBench: Curated List of Continuous Glucose Monitoring Datasets with Prediction Benchmarks [0.12564343689544843]
連続血糖モニター (Continuous glucose monitors, CGM) は、血糖値を一定間隔で測定する小さな医療機器である。
CGMデータに基づくグルコーストラジェクトリの予測は、糖尿病管理を大幅に改善する可能性を秘めている。
論文 参考訳(メタデータ) (2024-10-08T08:01:09Z) - From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [50.80532910808962]
GluFormerは、トランスフォーマーアーキテクチャに基づく生体医学的時間的データの生成基盤モデルである。
GluFormerは5つの地理的領域にまたがる4936人を含む15の異なる外部データセットに一般化されている。
今後4年間の健康状態も予測できる。
論文 参考訳(メタデータ) (2024-08-20T13:19:06Z) - Hearing Your Blood Sugar: Non-Invasive Glucose Measurement Through Simple Vocal Signals, Transforming any Speech into a Sensor with Machine Learning [0.0]
本稿では,音声解析を用いて血糖値を予測する変換的,簡便な手法を提案する。
高度な機械学習アルゴリズムを適用することで,音声信号の変動を分析し,血糖値と有意な相関性を確立した。
以上の結果から,音声分析はグルコースモニタリングの非侵襲的代替手段として有用である可能性が示唆された。
論文 参考訳(メタデータ) (2024-08-15T12:13:23Z) - Enhancing Wearable based Real-Time Glucose Monitoring via Phasic Image Representation Learning based Deep Learning [4.07484910093752]
米国では、成人の3分の1以上がプレ糖尿病であり、80%は彼らの状態に気づいていない。
既存のウェアラブルグルコースモニターは、小さなデータセットでトレーニングされたモデルの不足によって制限されている。
論文 参考訳(メタデータ) (2024-06-12T07:05:53Z) - Toward Short-Term Glucose Prediction Solely Based on CGM Time Series [4.7066018521459725]
TimeGluは、CGM時系列データに基づく短期的なグルコース予測のためのエンドツーエンドパイプラインである。
患者の個人データを追加することなく、最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-04-18T06:02:12Z) - Growing Q-Networks: Solving Continuous Control Tasks with Adaptive Control Resolution [51.83951489847344]
ロボット工学の応用において、スムーズな制御信号はシステム摩耗とエネルギー効率を減らすために一般的に好まれる。
本研究では,離散的な動作空間を粗い状態から細かい制御分解能まで拡大することにより,この性能ギャップを埋めることを目的とする。
我々の研究は、値分解とアダプティブ・コントロール・リゾリューションが組み合わさることで、単純な批判のみのアルゴリズムが得られ、連続制御タスクにおいて驚くほど高い性能が得られることを示唆している。
論文 参考訳(メタデータ) (2024-04-05T17:58:37Z) - Deep Reinforcement Learning Empowered Activity-Aware Dynamic Health
Monitoring Systems [69.41229290253605]
既存のモニタリングアプローチは、医療機器が複数の健康指標を同時に追跡するという前提で設計されている。
これは、その範囲内で関連するすべての健康値を報告し、過剰なリソース使用と外部データの収集をもたらす可能性があることを意味します。
最適なモニタリング性能とコスト効率のバランスをとるための動的アクティビティ・アウェアヘルスモニタリング戦略(DActAHM)を提案する。
論文 参考訳(メタデータ) (2024-01-19T16:26:35Z) - Optimal control for state preparation in two-qubit open quantum systems
driven by coherent and incoherent controls via GRAPE approach [77.34726150561087]
我々は、コヒーレントかつ非コヒーレントな時間依存制御によって駆動される2つの量子ビットのモデルを考える。
系の力学はゴリーニ=コサコフスキー=スダルシャン=リンドブラッドのマスター方程式によって支配される。
最適化制御の下で, フォン・ノイマンエントロピー, 純度, および1ビット還元密度行列の進化について検討した。
論文 参考訳(メタデータ) (2022-11-04T15:20:18Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
糖尿病網膜症における訓練方法の違いによる影響を比較検討した。
本稿では,定量的性能,学習した特徴表現の統計,解釈可能性,画像歪みに対する頑健性など,さまざまな側面について検討する。
以上の結果から,ImageNet事前学習モデルでは,画像歪みに対する性能,一般化,堅牢性が著しく向上していることが示唆された。
論文 参考訳(メタデータ) (2021-06-25T08:32:45Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
本研究では,デジタル意思決定支援ツールの入力として連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)データを利用する方法について検討する。
短時間の血液グルコース (STBG) 予測において, リカレントニューラルネットワーク (Recurrent Neural Networks, RNN) をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2020-02-06T16:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。