論文の概要: Toward Short-Term Glucose Prediction Solely Based on CGM Time Series
- arxiv url: http://arxiv.org/abs/2404.11924v1
- Date: Thu, 18 Apr 2024 06:02:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 13:11:02.766505
- Title: Toward Short-Term Glucose Prediction Solely Based on CGM Time Series
- Title(参考訳): CGM時系列に基づく短時間のグルコース予測に向けて
- Authors: Ming Cheng, Xingjian Diao, Ziyi Zhou, Yanjun Cui, Wenjun Liu, Shitong Cheng,
- Abstract要約: TimeGluは、CGM時系列データに基づく短期的なグルコース予測のためのエンドツーエンドパイプラインである。
患者の個人データを追加することなく、最先端のパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 4.7066018521459725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The global diabetes epidemic highlights the importance of maintaining good glycemic control. Glucose prediction is a fundamental aspect of diabetes management, facilitating real-time decision-making. Recent research has introduced models focusing on long-term glucose trend prediction, which are unsuitable for real-time decision-making and result in delayed responses. Conversely, models designed to respond to immediate glucose level changes cannot analyze glucose variability comprehensively. Moreover, contemporary research generally integrates various physiological parameters (e.g. insulin doses, food intake, etc.), which inevitably raises data privacy concerns. To bridge such a research gap, we propose TimeGlu -- an end-to-end pipeline for short-term glucose prediction solely based on CGM time series data. We implement four baseline methods to conduct a comprehensive comparative analysis of the model's performance. Through extensive experiments on two contrasting datasets (CGM Glucose and Colas dataset), TimeGlu achieves state-of-the-art performance without the need for additional personal data from patients, providing effective guidance for real-world diabetic glucose management.
- Abstract(参考訳): 世界的な糖尿病の流行は、優れた血糖コントロールを維持することの重要性を強調している。
グルコース予測は糖尿病管理の基本的な側面であり、リアルタイムな意思決定を促進する。
近年の研究では、リアルタイムな意思決定には適さない長期血糖傾向予測に焦点をあてたモデルを導入し、結果として反応が遅れている。
逆に、グルコースレベルの即時変化に対応するように設計されたモデルでは、グルコースの変動を包括的に分析することはできない。
さらに、現代の研究では、様々な生理的パラメータ(例えば、インスリン摂取量、食物摂取量など)を統合することで、データプライバシーの懸念が必然的に高まる。
このような研究ギャップを埋めるため,CGM時系列データのみに基づく短時間のグルコース予測のためのエンドツーエンドパイプラインであるTimeGluを提案する。
モデルの性能の包括的比較分析を行うために,4つのベースライン手法を実装した。
2つのコントラストデータセット(CGM GlucoseとColasデータセット)に関する広範な実験を通じて、TimeGluは患者の個人データを追加することなく最先端のパフォーマンスを達成し、現実の糖尿病血糖管理のための効果的なガイダンスを提供する。
関連論文リスト
- AttenGluco: Multimodal Transformer-Based Blood Glucose Forecasting on AI-READI Dataset [8.063401183752347]
糖尿病は、持続的な高血糖値(BGL)を特徴とする慢性代謝異常である
近年のディープラーニングモデルでは,BGL予測の改善が期待できる。
本研究では,長期血糖予測のためのマルチモーダルトランスフォーマーベースのフレームワークであるAttenGlucoを提案する。
論文 参考訳(メタデータ) (2025-02-14T05:07:38Z) - Let Curves Speak: A Continuous Glucose Monitor based Large Sensor Foundation Model for Diabetes Management [3.8195320624847833]
AIと継続的グルコースモニタリングを統合することは、近い将来のグルコース予測を約束する。
CGM-LSMは592人の糖尿病患者からの1596万のブドウ糖の記録に基づいて、近未来のグルコース予測のために事前訓練されている。
LSMは1型糖尿病患者29.81mg/dL、23.49mg/dLである。
論文 参考訳(メタデータ) (2024-12-12T21:35:13Z) - Domain Adaptive Diabetic Retinopathy Grading with Model Absence and Flowing Data [45.75724873443564]
ドメインシフトは、糖尿病網膜症などの臨床応用において重要な課題である。
本稿では,データ中心の観点から適応可能なGUES(Generative Unadversarial Examples)を提案する。
論文 参考訳(メタデータ) (2024-12-02T07:14:25Z) - GlucoBench: Curated List of Continuous Glucose Monitoring Datasets with Prediction Benchmarks [0.12564343689544843]
連続血糖モニター (Continuous glucose monitors, CGM) は、血糖値を一定間隔で測定する小さな医療機器である。
CGMデータに基づくグルコーストラジェクトリの予測は、糖尿病管理を大幅に改善する可能性を秘めている。
論文 参考訳(メタデータ) (2024-10-08T08:01:09Z) - FedGlu: A personalized federated learning-based glucose forecasting algorithm for improved performance in glycemic excursion regions [4.073768455373616]
連続グルコースモニタリング(Continuous glucose monitoring, CGM)デバイスは、血糖値のリアルタイムモニタリングと、血糖値の変動に対するタイムリーな警告を提供する。
低血糖や高血糖のような希少な出来事は、その頻度が低いために依然として困難である。
本稿では,血糖除去領域の性能を著しく向上させる新しいHH損失関数を提案する。
論文 参考訳(メタデータ) (2024-08-25T19:51:27Z) - From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [47.23780364438969]
本稿では,CGMデータの生成基盤モデルであるGluFormerについて紹介する。
GluFormerは、異なる民族や年齢、5つの国、8つのCGMデバイス、多様な病態状態にまたがる19の外部コホートに一般化する。
CGMデータと12年間のフォローアップを持つ580人の成人の縦断的研究において、GluFormerは血液HbA1C%よりも糖尿病を効果的に発症するリスクが高い個人を特定する。
論文 参考訳(メタデータ) (2024-08-20T13:19:06Z) - Detecting and clustering swallow events in esophageal long-term high-resolution manometry [48.688209040613216]
深達度学習に基づく飲み込み検出法を提案し, 二次性非解離性食道運動障害を正確に同定する。
われわれは,25 LTHRMで計算パイプラインを評価し,医療専門家の注意を喚起した。
論文 参考訳(メタデータ) (2024-05-02T09:41:31Z) - CrossGP: Cross-Day Glucose Prediction Excluding Physiological Information [4.975538965305628]
糖尿病患者の早期血糖予測は、タイムリーな治療に必要である。
そこで我々は,クロスデイグルコース予測のための新しい機械学習フレームワークであるCrossGPを提案する。
論文 参考訳(メタデータ) (2024-04-16T20:40:59Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
本研究では,疫病データから動的コンパートメンタルモデルの時間変化パラメータを学習するための一般的な手法を提案する。
我々はイタリアとフランスの疫病の進化を予報する。
論文 参考訳(メタデータ) (2020-10-28T10:58:59Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
パーキンソン病は神経疾患であり、高齢者に多い。
伝統的に病気を診断する方法は、一連の活動テストの品質に関する個人的主観的臨床評価に依存している。
そこで本研究では,スマートフォンが収集した生の行動データを用いて,パーキンソン病を予測するための時系列に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2020-09-25T01:50:15Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
本研究では,デジタル意思決定支援ツールの入力として連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)データを利用する方法について検討する。
短時間の血液グルコース (STBG) 予測において, リカレントニューラルネットワーク (Recurrent Neural Networks, RNN) をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2020-02-06T16:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。