論文の概要: Hearing Your Blood Sugar: Non-Invasive Glucose Measurement Through Simple Vocal Signals, Transforming any Speech into a Sensor with Machine Learning
- arxiv url: http://arxiv.org/abs/2408.08109v1
- Date: Thu, 15 Aug 2024 12:13:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 13:56:12.276669
- Title: Hearing Your Blood Sugar: Non-Invasive Glucose Measurement Through Simple Vocal Signals, Transforming any Speech into a Sensor with Machine Learning
- Title(参考訳): 血液糖を聴く:単純な声信号を通して非侵襲的なグルコース測定を行い、あらゆる音声を機械学習でセンサーに変換する
- Authors: Nihat Ahmadli, Mehmet Ali Sarsil, Onur Ergen,
- Abstract要約: 本稿では,音声解析を用いて血糖値を予測する変換的,簡便な手法を提案する。
高度な機械学習アルゴリズムを適用することで,音声信号の変動を分析し,血糖値と有意な相関性を確立した。
以上の結果から,音声分析はグルコースモニタリングの非侵襲的代替手段として有用である可能性が示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Effective diabetes management relies heavily on the continuous monitoring of blood glucose levels, traditionally achieved through invasive and uncomfortable methods. While various non-invasive techniques have been explored, such as optical, microwave, and electrochemical approaches, none have effectively supplanted these invasive technologies due to issues related to complexity, accuracy, and cost. In this study, we present a transformative and straightforward method that utilizes voice analysis to predict blood glucose levels. Our research investigates the relationship between fluctuations in blood glucose and vocal characteristics, highlighting the influence of blood vessel dynamics during voice production. By applying advanced machine learning algorithms, we analyzed vocal signal variations and established a significant correlation with blood glucose levels. We developed a predictive model using artificial intelligence, based on voice recordings and corresponding glucose measurements from participants, utilizing logistic regression and Ridge regularization. Our findings indicate that voice analysis may serve as a viable non-invasive alternative for glucose monitoring. This innovative approach not only has the potential to streamline and reduce the costs associated with diabetes management but also aims to enhance the quality of life for individuals living with diabetes by providing a painless and user-friendly method for monitoring blood sugar levels.
- Abstract(参考訳): 効果的な糖尿病管理は、伝統的に侵襲的で不快な方法で達成された血糖値の継続的なモニタリングに大きく依存している。
光学、マイクロ波、電気化学といった様々な非侵襲的手法が研究されているが、複雑さ、精度、コストに関する問題により、これらの侵襲的技術を効果的に置き換えた者はいない。
本研究では,音声解析を用いて血糖値を予測する変換的,簡便な手法を提案する。
本研究は, 発声時の血管動態の影響に着目し, 血糖変動と発声特性の関係について検討した。
高度な機械学習アルゴリズムを適用することで,音声信号の変動を分析し,血糖値と有意な相関性を確立した。
音声記録とそれに対応するグルコース測定に基づいて,ロジスティック回帰とリッジ正規化を用いた人工知能を用いた予測モデルを開発した。
以上の結果から,音声分析はグルコースモニタリングの非侵襲的代替手段として有用である可能性が示唆された。
この革新的なアプローチは、糖尿病管理に関連するコストを合理化し、削減するだけでなく、無痛でユーザーフレンドリーな血糖値モニタリング方法を提供することで、糖尿病患者にとっての生活の質を高めることを目的としている。
関連論文リスト
- Hybrid Attention Model Using Feature Decomposition and Knowledge Distillation for Glucose Forecasting [6.466206145151128]
GlucoNetは、行動と生理の健康を継続的に監視するAI駆動のセンサーシステムである。
本稿では,患者の行動・生理的データを組み込んだ分解型トランスフォーマーモデルを提案する。
GGlucoNetは、T1-Diabetesの12人を含むデータを用いて、RMSEの60%の改善とパラメータ数の21%削減を実現している。
論文 参考訳(メタデータ) (2024-11-16T05:09:20Z) - From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [50.80532910808962]
GluFormerは、トランスフォーマーアーキテクチャに基づく生体医学的時間的データの生成基盤モデルである。
GluFormerは5つの地理的領域にまたがる4936人を含む15の異なる外部データセットに一般化されている。
今後4年間の健康状態も予測できる。
論文 参考訳(メタデータ) (2024-08-20T13:19:06Z) - Variational and Explanatory Neural Networks for Encoding Cancer Profiles and Predicting Drug Responses [40.80133767939435]
既存のAIモデルは、転写学データのノイズと生物学的解釈性の欠如により、課題に直面している。
ノイズ効果を軽減するために変動成分を組み込んだ新しいニューラルネットワークフレームワークVETEを紹介する。
VETEは、AIによる予測と、がん研究における生物学的に意味のある洞察のギャップを埋める。
論文 参考訳(メタデータ) (2024-07-05T13:13:02Z) - Enhancing Wearable based Real-Time Glucose Monitoring via Phasic Image Representation Learning based Deep Learning [4.07484910093752]
米国では、成人の3分の1以上がプレ糖尿病であり、80%は彼らの状態に気づいていない。
既存のウェアラブルグルコースモニターは、小さなデータセットでトレーニングされたモデルの不足によって制限されている。
論文 参考訳(メタデータ) (2024-06-12T07:05:53Z) - Interpretable cancer cell detection with phonon microscopy using multi-task conditional neural networks for inter-batch calibration [39.759100498329275]
本稿では,バッチ間キャリブレーションを同時に実現する条件付きニューラルネットワークフレームワークを提案する。
異なる実験バッチをトレーニングし、検証することで、我々のアプローチを検証する。
このモデルを拡張して, 診断信号の再構成を行い, 疾患状態を示す有能な特徴の物理的解釈を可能にした。
論文 参考訳(メタデータ) (2024-03-26T12:20:10Z) - Neural Control System for Continuous Glucose Monitoring and Maintenance [0.0]
持続的なグルコースモニタリングと管理のための新しいニューラルコントロールシステムを提供する。
我々のアプローチは、洗練されたニューラルポリシーと微分可能なモデリングによって導かれ、常にリアルタイムでインスリン供給を調整する。
このエンドツーエンドの方法は効率を最大化し、パーソナライズされたケアを提供し、健康状態を改善する。
論文 参考訳(メタデータ) (2024-02-21T14:56:36Z) - Patterns Detection in Glucose Time Series by Domain Transformations and
Deep Learning [0.0]
本研究は,血糖値の今後の変動を予測することを目的としており,血糖値の低下が予想される可能性がある。
提案手法は, 有望な結果を得た4種類の糖尿病患者の実データを用いて検討した。
論文 参考訳(メタデータ) (2023-03-30T09:08:31Z) - Sickle Cell Disease Severity Prediction from Percoll Gradient Images
using Graph Convolutional Networks [38.27767684024691]
シックル細胞病(Sickle cell disease, SCD)は、赤血球の早期破壊を引き起こす重篤な遺伝性ヘモグロビン疾患である。
提案手法は,SCD重大度予測の難問に対する最初の計算手法である。
論文 参考訳(メタデータ) (2021-09-11T21:09:50Z) - Machine learning for the diagnosis of early stage diabetes using
temporal glucose profiles [0.20072624123275526]
糖尿病は慢性疾患であり、早期に疾患の検出を複雑にする長い潜伏期間を有する。
本稿では,グルコース濃度の時間変化の微妙な変化を機械学習で検出することを提案する。
多層パーセプトロン、畳み込みニューラルネットワーク、および繰り返しニューラルネットワークはいずれも85%以上の精度でインスリン抵抗の程度を同定した。
論文 参考訳(メタデータ) (2020-05-18T13:31:12Z) - Heart Sound Segmentation using Bidirectional LSTMs with Attention [37.62160903348547]
心電図(PCG)信号を心臓状態に分割するための新しい枠組みを提案する。
我々は近年の注目に基づく学習の進歩を利用してPCG信号のセグメンテーションを行う。
提案手法は,ヒトと動物の両方の心臓記録を含む複数のベンチマークにおいて,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-04-02T02:09:11Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
本研究では,デジタル意思決定支援ツールの入力として連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)データを利用する方法について検討する。
短時間の血液グルコース (STBG) 予測において, リカレントニューラルネットワーク (Recurrent Neural Networks, RNN) をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2020-02-06T16:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。