論文の概要: Probabilistic Neural Networks (PNNs) for Modeling Aleatoric Uncertainty
in Scientific Machine Learning
- arxiv url: http://arxiv.org/abs/2402.13945v1
- Date: Wed, 21 Feb 2024 17:15:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-22 14:32:10.663931
- Title: Probabilistic Neural Networks (PNNs) for Modeling Aleatoric Uncertainty
in Scientific Machine Learning
- Title(参考訳): 科学的機械学習における線形不確かさのモデル化のための確率論的ニューラルネットワーク(PNN)
- Authors: Farhad Pourkamali-Anaraki, Jamal F. Husseini, Scott E. Stapleton
- Abstract要約: 本稿では,確率論的ニューラルネットワーク(PNN)を用いてアレータティック不確実性をモデル化する。
PNNはターゲット変数の確率分布を生成し、回帰シナリオにおける予測平均と間隔の両方を決定できる。
実世界の科学機械学習の文脈では、PNNはR2乗のスコアが0.97に近づき、その予測間隔は0.80に近い高い相関係数を示す。
- 参考スコア(独自算出の注目度): 2.348041867134616
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates the use of probabilistic neural networks (PNNs) to
model aleatoric uncertainty, which refers to the inherent variability in the
input-output relationships of a system, often characterized by unequal variance
or heteroscedasticity. Unlike traditional neural networks that produce
deterministic outputs, PNNs generate probability distributions for the target
variable, allowing the determination of both predicted means and intervals in
regression scenarios. Contributions of this paper include the development of a
probabilistic distance metric to optimize PNN architecture, and the deployment
of PNNs in controlled data sets as well as a practical material science case
involving fiber-reinforced composites. The findings confirm that PNNs
effectively model aleatoric uncertainty, proving to be more appropriate than
the commonly employed Gaussian process regression for this purpose.
Specifically, in a real-world scientific machine learning context, PNNs yield
remarkably accurate output mean estimates with R-squared scores approaching
0.97, and their predicted intervals exhibit a high correlation coefficient of
nearly 0.80, closely matching observed data intervals. Hence, this research
contributes to the ongoing exploration of leveraging the sophisticated
representational capacity of neural networks to delineate complex input-output
relationships in scientific problems.
- Abstract(参考訳): 本稿では,確率論的ニューラルネットワーク(PNN)を用いて,システムの入出力関係における固有変動をモデル化し,不等分散や不均質性を特徴とする。
決定論的出力を生成する従来のニューラルネットワークとは異なり、PNNはターゲット変数の確率分布を生成し、回帰シナリオにおける予測された平均と間隔を決定できる。
本稿では,PNNアーキテクチャを最適化するための確率的距離測定法の開発,制御されたデータセットへのPNNの展開,および繊維強化複合材料を含む実用的物質科学事例について述べる。
以上の結果から,PNNはアレータリック不確実性を効果的にモデル化し,ガウス過程の回帰よりも適切であることが確認された。
具体的には、実世界の科学機械学習の文脈において、PNNはR2乗のスコアが0.97に近づき、その予測間隔は0.80に近い高い相関係数を示し、観測データ間隔は密に一致している。
そこで本研究では, ニューラルネットワークの洗練された表現能力を活用し, 複雑な入出力関係を科学的な問題に展開する研究に寄与する。
関連論文リスト
- Skew Probabilistic Neural Networks for Learning from Imbalanced Data [3.7892198600060945]
本稿では,確率論的ニューラルネットワーク(PNN)とスキュー正規確率カーネルを用いた不均衡なデータ指向手法を提案する。
我々はSkewPNNが、ほとんどの実験環境でバランスの取れたデータセットと不均衡なデータセットの両方に対して、最先端の機械学習手法を大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2023-12-10T13:12:55Z) - Uncertainty Quantification in Multivariable Regression for Material Property Prediction with Bayesian Neural Networks [37.69303106863453]
物理インフォームドBNNにおける不確実性定量化(UQ)のアプローチを提案する。
本稿では, 鋼のクリープ破断寿命を予測するためのケーススタディを提案する。
クリープ寿命予測の最も有望なフレームワークは、マルコフ・チェイン・モンテカルロによるネットワークパラメータの後方分布の近似に基づくBNNである。
論文 参考訳(メタデータ) (2023-11-04T19:40:16Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - coVariance Neural Networks [119.45320143101381]
グラフニューラルネットワーク(GNN)は、グラフ構造化データ内の相互関係を利用して学習する効果的なフレームワークである。
我々は、サンプル共分散行列をグラフとして扱う、共分散ニューラルネットワーク(VNN)と呼ばれるGNNアーキテクチャを提案する。
VNN の性能は PCA ベースの統計手法よりも安定していることを示す。
論文 参考訳(メタデータ) (2022-05-31T15:04:43Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
確率的自己回帰ニューラルネットワーク(PARNN)について紹介する。
PARNNは、非定常性、非線形性、非調和性、長距離依存、カオスパターンを示す複雑な時系列データを扱うことができる。
本研究では,Transformers,NBeats,DeepARなどの標準統計モデル,機械学習モデル,ディープラーニングモデルに対して,PARNNの性能を評価する。
論文 参考訳(メタデータ) (2022-04-01T17:57:36Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Interpretable Additive Recurrent Neural Networks For Multivariate
Clinical Time Series [4.125698836261585]
本稿では,モデル内の変数間の関係を加法的に強制することで,モデルの複雑性と精度のバランスをとるInterpretable-RNN(I-RNN)を提案する。
I-RNNは、時間内に不均一にサンプリングされ、非同期に取得され、データが欠落している臨床時系列の特徴を特に捉えている。
本研究は,院内死亡率予測のためのPhysoronet 2012 ChallengeデータセットのI-RNNモデルと,集中治療室における血行動態の介入を予測するリアルな臨床診断支援タスクについて評価する。
論文 参考訳(メタデータ) (2021-09-15T22:30:19Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Multi-Sample Online Learning for Probabilistic Spiking Neural Networks [43.8805663900608]
スパイキングニューラルネットワーク(SNN)は、推論と学習のための生物学的脳の効率の一部をキャプチャする。
本稿では,一般化予測最大化(GEM)に基づくオンライン学習ルールを提案する。
標準ニューロモルフィックデータセットにおける構造化された出力記憶と分類実験の結果,ログの類似性,精度,キャリブレーションの点で大きな改善が見られた。
論文 参考訳(メタデータ) (2020-07-23T10:03:58Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z) - Stochastic Graph Neural Networks [123.39024384275054]
グラフニューラルネットワーク(GNN)は、分散エージェント調整、制御、計画に応用したグラフデータの非線形表現をモデル化する。
現在のGNNアーキテクチャは理想的なシナリオを前提として,環境やヒューマンファクタ,あるいは外部攻撃によるリンク変動を無視している。
これらの状況において、GNNは、トポロジカルなランダム性を考慮していない場合、その分散タスクに対処することができない。
論文 参考訳(メタデータ) (2020-06-04T08:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。