論文の概要: Geometry-Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2402.14009v3
- Date: Mon, 14 Oct 2024 14:15:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-15 15:03:58.069451
- Title: Geometry-Informed Neural Networks
- Title(参考訳): 幾何インフォームドニューラルネットワーク
- Authors: Arturs Berzins, Andreas Radler, Eric Volkmann, Sebastian Sanokowski, Sepp Hochreiter, Johannes Brandstetter,
- Abstract要約: 幾何インフォームドニューラルネットワーク(GINN)を導入する。
GINNは、データなしで形状生成ニューラルネットワークをトレーニングするためのフレームワークである。
GINNをいくつかの検証問題と現実的な3Dエンジニアリング設計問題に適用する。
- 参考スコア(独自算出の注目度): 15.27249535281444
- License:
- Abstract: Geometry is a ubiquitous tool in computer graphics, design, and engineering. However, the lack of large shape datasets limits the application of state-of-the-art supervised learning methods and motivates the exploration of alternative learning strategies. To this end, we introduce geometry-informed neural networks (GINNs) -- a framework for training shape-generative neural fields without data by leveraging user-specified design requirements in the form of objectives and constraints. By adding diversity as an explicit constraint, GINNs avoid mode-collapse and can generate multiple diverse solutions, often required in geometry tasks. Experimentally, we apply GINNs to several validation problems and a realistic 3D engineering design problem, showing control over geometrical and topological properties, such as surface smoothness or the number of holes. These results demonstrate the potential of training shape-generative models without data, paving the way for new generative design approaches without large datasets.
- Abstract(参考訳): Geometryはコンピュータグラフィックス、デザイン、エンジニアリングにおいてユビキタスなツールである。
しかし,大規模データセットの欠如は,最先端の教師付き学習手法の適用を制限し,代替学習戦略の探索を動機付けている。
目的と制約の形で、ユーザが指定した設計要件を活用することにより、データなしで形状生成ニューラルネットワークをトレーニングするフレームワークである、幾何学的インフォームドニューラルネットワーク(GINN)を導入する。
多様性を明示的な制約として追加することにより、GINNはモード崩壊を回避し、幾何学的なタスクでしばしば必要とされる複数の多様なソリューションを生成することができる。
実験により,GINNをいくつかの検証問題や現実的な3次元工学設計問題に適用し,表面の滑らかさや穴の数などの幾何学的および位相的特性の制御を示す。
これらの結果は、データのない形状生成モデルのトレーニングの可能性を示し、大規模なデータセットを持たない新しい生成設計アプローチの道を開いた。
関連論文リスト
- Reference Neural Operators: Learning the Smooth Dependence of Solutions of PDEs on Geometric Deformations [13.208548352092455]
任意の形状の領域上の偏微分方程式に対して、ニューラル作用素の既存の研究は、幾何学から解への写像を学ぼうとする。
本稿では、幾何学的変形に対する解の滑らかな依存を学習するために、参照ニューラル演算子(RNO)を提案する。
RNOはベースラインモデルの精度を大きなリードで上回り、最大80%のエラー低減を達成する。
論文 参考訳(メタデータ) (2024-05-27T06:50:17Z) - A Survey of Geometric Graph Neural Networks: Data Structures, Models and
Applications [67.33002207179923]
本稿では、幾何学的GNNに関するデータ構造、モデル、および応用について調査する。
幾何学的メッセージパッシングの観点から既存のモデルの統一的なビューを提供する。
また、方法論開発と実験評価の後の研究を促進するために、アプリケーションと関連するデータセットを要約する。
論文 参考訳(メタデータ) (2024-03-01T12:13:04Z) - Physics-informed neural networks for transformed geometries and
manifolds [0.0]
本稿では,幾何学的変分を頑健に適合させるために,PINN内に幾何変換を統合する新しい手法を提案する。
従来のPINNに対して,特に幾何学的変動下での柔軟性の向上を実証する。
提案したフレームワークは、パラメータ化されたジオメトリ上でのディープ・ニューラル演算子のトレーニングの展望を示す。
論文 参考訳(メタデータ) (2023-11-27T15:47:33Z) - MMGP: a Mesh Morphing Gaussian Process-based machine learning method for
regression of physical problems under non-parameterized geometrical
variability [0.30693357740321775]
本稿では,グラフニューラルネットワークに依存しない機械学習手法を提案する。
提案手法は, 明示的な形状パラメータ化を必要とせずに, 大きなメッシュを容易に扱うことができる。
論文 参考訳(メタデータ) (2023-05-22T09:50:15Z) - Exploring Data Geometry for Continual Learning [64.4358878435983]
非定常データストリームのデータ幾何を探索することにより,新しい視点から連続学習を研究する。
提案手法は,新しいデータによって引き起こされる幾何構造に対応するために,基底空間の幾何学を動的に拡張する。
実験により,本手法はユークリッド空間で設計したベースライン法よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-04-08T06:35:25Z) - Topology optimization with physics-informed neural networks: application
to noninvasive detection of hidden geometries [0.40611352512781856]
本稿では,隠れた幾何学構造を検出するためのPINNに基づくトポロジ最適化フレームワークを提案する。
非線形弾性体および非線形弾性体における隠れヴォイドおよび包有物の数,位置,形状を検出することにより,我々の枠組みを検証した。
論文 参考訳(メタデータ) (2023-03-13T12:44:32Z) - Neural Template: Topology-aware Reconstruction and Disentangled
Generation of 3D Meshes [52.038346313823524]
本稿では,Distangled Topologyによる3次元メッシュ再構成と生成のためのDTNetという新しいフレームワークを提案する。
提案手法は,最先端の手法と比較して,特に多様なトポロジで高品質なメッシュを生成することができる。
論文 参考訳(メタデータ) (2022-06-10T08:32:57Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
本稿では,グラフ・ニューラル・ネットワークの文献からトライアングル・メッシュへ引き起こされた原始双対のフレームワークを提案する。
提案手法は,3次元メッシュのエッジと顔の両方を入力として特徴付け,動的に集約する。
メッシュ単純化の文献から得られたツールを用いて、我々のアプローチに関する理論的知見を提供する。
論文 参考訳(メタデータ) (2020-10-23T14:49:02Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
1つ以上の視点から見れば、新しいオブジェクトの3次元パラメトリック表面表現を学習する際の課題について検討する。
ビュー間で一貫した高品質なパラメトリックな3次元表面を生成できるニューラルネットワークを設計する。
提案手法は,共通対象カテゴリからの形状の公開データセットに基づいて,教師と訓練を行う。
論文 参考訳(メタデータ) (2020-08-18T06:33:40Z) - DSG-Net: Learning Disentangled Structure and Geometry for 3D Shape
Generation [98.96086261213578]
DSG-Netは3次元形状の非交叉構造と幾何学的メッシュ表現を学習するディープニューラルネットワークである。
これは、幾何(構造)を不変に保ちながら構造(幾何学)のような不整合制御を持つ新しい形状生成アプリケーションの範囲をサポートする。
本手法は,制御可能な生成アプリケーションだけでなく,高品質な合成形状を生成できる。
論文 参考訳(メタデータ) (2020-08-12T17:06:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。