論文の概要: Motion Code: Robust Time series Classification and Forecasting via Sparse Variational Multi-Stochastic Processes Learning
- arxiv url: http://arxiv.org/abs/2402.14081v2
- Date: Wed, 24 Apr 2024 02:45:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-25 16:15:09.013849
- Title: Motion Code: Robust Time series Classification and Forecasting via Sparse Variational Multi-Stochastic Processes Learning
- Title(参考訳): 動作コード:スパース変分多確率過程学習によるロバスト時系列分類と予測
- Authors: Chandrajit Bajaj, Minh Nguyen,
- Abstract要約: 本稿では,各時系列を連続的なプロセスのサンプル化として考える新しいフレームワークを提案する。
このような数学的モデルは、複数のタイムスタンプにまたがるデータ依存を明示的に捉え、ノイズから隠れた時間依存信号を検出する。
次に、割り当てられたベクトルに基づいて個々のダイナミクスのスパース近似を推測する最も情報性の高いタイムスタンプの抽象的概念を提案する。
- 参考スコア(独自算出の注目度): 3.2857981869020327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite being extensively studied, time series classification and forecasting on noisy data remain highly difficult. The main challenges lie in finding suitable mathematical concepts to describe time series and effectively separating noise from the true signals. Instead of treating time series as a static vector or a data sequence as often seen in previous methods, we introduce a novel framework that considers each time series, not necessarily of fixed length, as a sample realization of a continuous-time stochastic process. Such mathematical model explicitly captures the data dependence across several timestamps and detects the hidden time-dependent signals from noise. However, since the underlying data is often composed of several distinct dynamics, modeling using a single stochastic process is not sufficient. To handle such settings, we first assign each dynamics a signature vector. We then propose the abstract concept of the most informative timestamps to infer a sparse approximation of the individual dynamics based on their assigned vectors. The final model, referred to as Motion Code, contains parameters that can fully capture different underlying dynamics in an integrated manner. This allows unmixing classification and generation of specific sub-type forecasting simultaneously. Extensive experiments on sensors and devices noisy time series data demonstrate Motion Code's competitiveness against time series classification and forecasting benchmarks.
- Abstract(参考訳): 広範に研究されているにもかかわらず、ノイズの多いデータの時系列分類と予測は非常に困難である。
主な課題は、時系列を記述するのに適した数学的概念を見つけ、真の信号から効果的にノイズを分離することである。
時系列を静的ベクトルやデータシーケンスとして扱う代わりに、連続時間確率過程のサンプル化として、必ずしも固定長ではない各時系列を考察する新しいフレームワークを導入する。
このような数学的モデルは、複数のタイムスタンプにまたがるデータ依存を明示的に捉え、ノイズから隠れた時間依存信号を検出する。
しかし、基礎となるデータはいくつかの異なるダイナミクスで構成されていることが多いため、単一の確率過程を用いたモデリングは不十分である。
このような設定に対処するため、まず各ダイナミクスにシグネチャベクトルを割り当てる。
次に、割り当てられたベクトルに基づいて個々のダイナミクスのスパース近似を推測する最も情報性の高いタイムスタンプの抽象的概念を提案する。
最終的なモデルであるMotion Codeには、さまざまな基盤となるダイナミクスを統合的に完全にキャプチャ可能なパラメータが含まれている。
これにより、未混合の分類と特定のサブタイプの予測を同時に生成することができる。
センサやデバイスに関する大規模な実験は、時系列の分類と予測ベンチマークに対するモーションコードの競争性を実証している。
関連論文リスト
- Enhancing Foundation Models for Time Series Forecasting via Wavelet-based Tokenization [74.3339999119713]
我々はウェーブレットベースのトークンーザを開発し、時間局所化周波数の空間でモデルが複雑な表現を直接学習できるようにする。
提案手法は,まず入力時系列をスケール・分解し,次に閾値を設定し,ウェーブレット係数を定量化し,最後に予測水平方向の係数を予測する自己回帰モデルを事前学習する。
論文 参考訳(メタデータ) (2024-12-06T18:22:59Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - Feature Programming for Multivariate Time Series Prediction [7.0220697993232]
本稿では,時系列モデリングのためのプログラム可能な機能工学の概念を紹介する。
本稿では,ノイズの多い時系列に対して大量の予測機能を生成する機能プログラミングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-09T20:46:55Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - DCSF: Deep Convolutional Set Functions for Classification of
Asynchronous Time Series [5.339109578928972]
非同期時系列(Asynchronous Time Series)は、すべてのチャンネルが非同期に独立して観察される時系列である。
本稿では,非同期時系列分類タスクにおいて,高度にスケーラブルでメモリ効率のよい新しいフレームワークを提案する。
我々は、定期的にサンプリングされ、完全に観測される時系列の、密接に関連する問題分類のためによく研究されている畳み込みニューラルネットワークを探索する。
論文 参考訳(メタデータ) (2022-08-24T08:47:36Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Unsupervised Representation Learning for Time Series with Temporal
Neighborhood Coding [8.45908939323268]
非定常時系列に対する一般化可能な表現を学習するための自己教師型フレームワークを提案する。
我々のモチベーションは、時系列データの動的性質をモデル化する能力が特に有用である医療分野に起因している。
論文 参考訳(メタデータ) (2021-06-01T19:53:24Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
本稿では,新しい条件生成モデルである変分相乗型マルチホライゾンネットワーク(VSMHN)を提案する。
不均一なシーケンス間で複雑な相関関係を学習するために、深部プロセスモデルと変動的リカレントニューラルネットワークの進歩を組み合わせるために、調整されたエンコーダが考案された。
我々のモデルは変動予測を用いて効果的に訓練でき、モンテカルロシミュレーションを用いて予測を生成することができる。
論文 参考訳(メタデータ) (2021-01-31T11:00:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。